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Abstract

Motivated by recent work, we establish the Baire Theorem in the broad

context afforded by weak forms of completeness implied by analyticity and

K-analyticity, thereby adding to the ‘Baire space recognition literature’ (cf.

[AL], [HM]). We extend a metric result of van Mill, obtaining a generalization

of Oxtoby’s weak α-favourability conditions (and therefrom variants of the

Baire Theorem), in a form in which the principal role is played by K-analytic

(in particular analytic) sets that are ‘heavy’ (everywhere large in the sense

of some σ-ideal). From this perspective fine-topology versions are derived,

allowing a unified view of the Baire Theorem which embraces classical as

well as generalized Gandy-Harrington topologies (including the Ellentuck

topology), and also various separation theorems. A multiple-target form of

the Choquet Banach-Mazur game is a primary tool, the key to which is a

restatement of the Cantor theorem, again in K-analytic form.
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1 Analytic Baire & Analytic Cantor Theo-

rems: the ABC of localization

We consider games of Banach-Mazur and Choquet type in the category of

K-analytic spaces (here K refers to compact subspaces, all terms to be de-

fined below), a category of Lindelöf spaces broader than the complete spaces,

but smaller and simpler than the category of p-spaces, with which they share
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many features. (Actually, the current approach has non-Lindelöf general-

izations – see no further than the end of this paragraph.) In doing so we

demonstrate why analytic spaces provide a satisfying, viable replacement for

Polish spaces in circumstances where completeness is lacking. (A similar

theme is developed for measure theory by Fremlin, for which see [Fre-4] Part

I, Ch. 43) Indeed, completeness will be absent, even in a compact metric

context, from a respectably-defined subspace, when it turns out to have de-

scriptive character more complex than Gδ. See §5 for examples from recent

literature of established theorems whose range of applicability has been con-

siderably broadened by an analytic-space hypothesis in lieu of completeness

(in particular the Effros Open Mapping Principle), and the more recent re-

sults in [Ost-LBIII] on infinite combinatorics (concerning shift-compactness

and exhibiting measure-category duality), and [Ost-Joint] (separable case)

and [Ost-AB] (for the non-separable case) on continuity in groups. We briefly

consider the metric-space category of non-separable classical analytic spaces,

which viewed through their ‘extended Souslin’ representation share some of

the properties of K-analytic spaces developed here. As the technical ap-

paratus there is more demanding, we limit ourselves mostly to informative

comment. We again refer to [Ost-AB] for applications in the non-separable

metric context of the approach here.

An observation of van Mill in the metric setting of [vM] (Prop. 2.2) is our

point of departure, given below as Theorem A – in the context of Hausdorff

spaces. Here it is recognized as an equivalent analytic-sets restatement of the

standard Baire Theorem (i.e., in a Polish space, the intersection of dense open

sets is dense), with the advantages of symmetry: analytic sets replace both

the space of the premise (that the space is Polish), and the intersection set of

the conclusion, and with a weaker hypothesis of largeness, since ‘dense open’

is replaced throughout by ‘dense and everywhere non-meagre and analytic’.

Passage to other σ-ideals immediately suggests itself. (Note that open sets

might not be analytic in a more general context – see Lemma 1.)

Indeed, by working with various σ-ideals I on K-analytic sets, we are also

able to establish several analogues of Theorem A for the contexts of: measure
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theory, Luzin-separation theory (with Loveau’s separation theorem in its

ambit, see §3.2), and fine topology, including the Baire Theorem satisfied

by the Gandy-Harrington topology from mathematical logic. (The latter is

a refinement of the metric topology on NN, generated by some Σ1
1-sets, i.e.

again certain analytic sets – see §2.)

Our arguments rely on two ingredients:

(i) Localization with respect to I, and

(ii) Analytic Cantor Theorems (variants of ‘sieve completeness’, but in

an instantly recognizable form).

It is precisely the analytic Cantor argument that may be viewed as construct-

ing strategies in a topological Banach-Mazur game, yielding a reinterpreta-

tion that I-heavy (definition below) analytic spaces are ‘favourable’ (to one

player of the game, by yielding up a winning strategy).

Van Mill’s variant and proof of Theorem A (in the metric context) refer

to analytic sets only to obtain an elementary proof of the Effros theorem

that avoids use of the Baire property (so avoids a feature common to several

earlier proofs – see §5). In fact Theorem A follows easily (see below) from an

appeal to Nikodym’s Theorem on the preservation of the Baire property by

the Souslin operation (see [Jay-Rog] p. 42-43), and the fact that closed sets

have the Baire property. Our new viewpoint enables us to extract more from

van Mill’s approach. In particular, it enables, as we show, the construction of

strategies in certain topological Banach-Mazur games, when the spaces are

continuous images of a Lindelöf, Čech-complete space. (But see [Kech] 21.6

for a Banach-Mazur game proof that classical analytic sets have the Baire

property.)

The focus on analytic spaces is motivated by a desire to unify some ‘mir-

roring themes’, recurring justifiably in two literatures: classical analysis (such

as the Effros theorem) and mathematical logic – see for instance Becker’s re-

cent quest for a new definition of ‘satisfactory’ analyticity in [Bec]. A brief

separate section (§5.1) points to the broader picture, obtained by replacing

K-analytic spaces by p-spaces.
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1.1 Measure-category duality & Analytic Baire Theo-
rems

Notation. Write I for NN endowed with the product topology (treating N
as discrete) and i|n := (i1, ..., in) for i ∈ I. Denote by K = K(X) the family

of compact subsets of a topological space X, G = G(X) the open sets, and

F = F(X) the closed sets.

Definitions 1 (K-analytic spaces). We recall from [Jay-Rog] that for

X a Hausdorff space, a map K : I → ℘(X) is compact-valued if K(i) is

compact for each i ∈ I, and singleton-valued if each K(i) is a singleton. K is

upper-semicontinuous if, for each i ∈ I and each open U in X with K(i) ⊆ U,

there is n such that K(i′) ⊆ U for each i′ with i′|n = i|n.

A subset in X is K-analytic if it may be represented in the form K(I) for

some compact-valued, upper-semicontinuous map K : I → ℘(X). We say

that X is a K-analytic space if X itself is a K-analytic set.

Notation (continued). Recalling the notation i|n := (i1, ..., in), we

put I(i|n) := {i′ : i′|n = i|n} and I<(i|n) := {i′ ∈ I : i′m ≤ im for

m ≤ n}. So I<(i) :=
⋂

n I<(i|n) is compact (by Tychonoff’s Theorem).

Correspondingly we write K(i|n) := K(I(i|n)) =
⋃{K(i′) : i′|n = i|n},

K<(i|n) := K(I<(i|n)), and K<(i) = K(I<(i)); the latter is also compact if

K is compact-valued and upper-semicontinuous.

We recall that a set A in X is obtained from a family H of subsets of

X by the Souslin operation (briefly is Souslin-H), if there is a determining

system H = 〈H(i|n)〉 assigning to each i|n a set H(i|n) ∈ H with

A =
⋃

i∈I

⋂
n∈ω

H(i|n).

Definition 2. If K : I → K(X) is upper semi-continuous, say that K is

H-circumscribed if there is a determining system 〈H(i|n)〉 assigning to each

i|n a set H(i|n) ∈ H with K(i) = H(i) :=
⋂

n∈ω H(i|n) such that H(i) ⊆ U

for U open implies that H(i|n) ⊆ U for some n.
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Remarks. 1. If K is upper-semicontinuous, as above, and X is Haus-

dorff, then

K(I) =
⋃

i∈I

⋂
n∈ω

clK(i|n),

so K is F -circumscribed, in particular a K-analytic set is Souslin-F . Indeed,

as K(i) ⊆ ⋂
n∈ωclK(i|n), the inclusion from left to right is clear; for the

other direction, if x ∈ (
⋂

n∈ωclK(i|n))\K(i) for some i, then there is U open

with x /∈clU and K(i) ⊆ U, and so K(i|n) ⊆ U for some n, yielding the

contradiction that x /∈clK(i|n) ⊆clU.

2. If further X is a metric space and G(i|n) := B1/n(K(i|n)) = {x :

d(x, y) < 1/n for some y ∈ K(i|n)}, then K(I) =
⋃

i∈I

⋂
n∈ω G(i|n) is a

Souslin-G representation such that:

(i)
⋂

n∈ω G(i|n) = K(i) is compact;

(ii) K(i) ⊆ U, for U open, implies that G(i|n) ⊆ U for some n.

Then K is G-circumscribed. Indeed, if K(i) ⊆ U, then by compactness

there is n such that B2/n(K(i)) ⊆ U. But for m > n large enough K(i|m) ⊆
B1/n(K(i)), and so B1/m(K(i|m)) ⊆ B1/m(B1/n(K(i))) ⊆ B2/n(K(i)) ⊆ U.

We will return to this observation when we consider p-spaces in §5.1.

3. See §1.3 for generalizations of the above in which I is replaced by

J = κN with κ an arbitrary infinite cardinal.

Definition (analytic spaces). Call a Hausdorff space X analytic if X

is the continuous image of a closed subset of I, or equivalently of a Polish

space. So an analytic space is K-analytic, since singletons are compact; a

K-analytic subset of an analytic set is analytic. A K-analytic space is more

general, since it is a continuous image of a Lindelöf Čech-complete space (by

Jayne’s Theorem – [Jay-Rog] Th.2.8.1; cf. Hansell [Han-92] Th. 3.1).

Note that if X is metric and K-analytic, then without loss of generality we

may arrange to have diamX(K(i|n)) < 2−n. This implies that K(i) = {k(i)}
on a closed subset of I on which k is continuous. See [Jay-Rog] §2.8 for

background on different definitions of analyticity, and §2.11 for applications

to Banach spaces under the weak topology.
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In a metric analytic space open sets, being Fσ, are analytic. Note that

an open subset of a Polish space is again a Polish space. This yields the

following generalizations.

Lemma 1. (i) In an analytic space, all open sets are analytic.

(ii) A regular K-analytic space (in particular a regular analytic space) is

Lindelöf, so open sets are K-analytic iff they are Fσ.

Proof. (i) If X is the continuous image of I under α, then each open U

in X is the continuous image under α of α−1(U), an open subset in I.

(ii) By regularity, for U open, U has an open covering by sets V with

clV ⊆ U. If U is K-analytic, it is Lindelöf, and so U has a countable covering

by open sets Vn with clVn ⊆ U ; so U =
⋃

nclVn is an Fσ. For the converse,

as Souslin-Fσ subsets of a K-analytic space are K-analytic, open sets are

K-analytic if they are Fσ. ¤

Remark. 1. See §3 for a useful assumption weaker than that open sets

are K-analytic. Of course for U open, (clU)\U is closed nowhere dense, so

modulo a meagre set an open set is closed, so ‘almost K-analytic’.

2. The two parts of Lemma 1 are close, since ([Levi], [HrAv]) every

analytic Baire space has a dense completely metrizable subspace; in fact

every regular analytic space has a finer topology in which it is metrizable (just

declare the countably many set clα(I(i|n)) to be open). The former condition

is related to the existence of winning strategies in certain topological games

(see Proposition L3 in §3 and [Wh] Th. (11)).

Definitions 3 (I-Heavy parts). Let X be a topological space and I a

σ-ideal in ℘(X). We have in mind I = M, the meagre sets, N , the null sets

(if X carries a measure), and the trivial ideal I = {∅}. We will also consider

for A a fixed (usually analytic) set, with Bo(X) denoting the σ-algebra of

Borel subsets, the omission σ-ideal IA := {C : (∃B ∈ Bo(X))[C ⊆ B and

B ∩ A = ∅]}.
Say that I has the Borel envelope property if for any analytic A ∈ I there

is a Borel B ∈ I with A ⊆ B. All four of M,N , IA and {∅} have this
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property. (The Borel set can be Fσ in the first case, and Gδ in the second

case.)

Say that S is I-heavy, resp. I-heavy on G, in X if S ∩ U /∈ I for every

open set U in X meeting S, resp. for every open U meeting S ∩ G. (The

term ‘heavy’ is established, going back to [BrGo]; van Mill [vM] calls a dense,

heavy set ‘fat’. See also [St1] for a general ‘kernel’ approach.) We will drop

the reference to I whenever convenient, when context allows.

For I = {∅}, the trivial ideal, any set is I-heavy (vacuously so, when

empty).

In a space X, the I-light part of A is defined to be the set LI(A) :=⋃{V ∩A : V open and A∩V ∈ I}. The heavy part of A is the complementary

set HI(A) = A\LI(A). We say that A is heavy (heavy on G) if LI(A) is empty

(if LI(A) ∩G is empty).

Definition. Say that I has the localization property if LI(A) ∈ I for

each A.

This ‘light’ part property, when true, has implications for the heavy part.

In §3.2 we establish a ‘heavy’ property without a ‘light’ one being available.

(For relevance of light localization in fine topologies, to ideal base operators,

see [LMZ] §1.C, where also counterexamples arising in harmonic spaces are

cited.)

The next result is Banach’s localization principle (for which see [Jay-Rog]

p. 42, [Kel] Th. 6.35, [Oxt2] Ch. 16 under the name of Banach’s Category

Theorem, or [Kur-1] §10.III under the name Union theorem).

Category Localization Lemma (Light version). LM(A) is meagre

for each set A.

We next verify directly that the measure analogue also holds. That case

may be deduced from the Category Localization Lemma using the existence

of the density topology, D. To do this we recall the definition of D for the

case of R, and the general case of a metrizable topological group. (For this

and especially generalizations involving other σ-ideals, see [Wil].)
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In the case of R , with |.| Lebesgue measure, D, the density topology,

comprises measurable subsets D such that all points of D are density points

of D. It is precisely because D is closed under arbitrary unions (see [GNN],

[GoWa] and [Mar]) that D is a topology. In any locally compact metrizable

topological group this idea may be repeated verbatim with |.| the Haar (in-

variant) measure, by appeal to a combination of the results of Martin [Mar]

and Mueller [Mue]. (See e.g. [BOst-N] for an exposition, or [Ost-LBIII] for

the more general normed group case.) For I = N , the null sets, and A

arbitrary, LN (A) :=
⋃{A ∩ D : D ∈ D and A ∩ D ∈ N}; however, we are

interested only in A measurable.

We write A∗ for the set of those points of A that are density points of

A. This is a measurable set and comprises almost all points of A, by the

Lebesgue Density Theorem in the Lebesgue case, and by Mueller’s result in

the Haar case. So for any A, one has A∗ =intD(A), the D-interior of A, and

also A∗ = A∩intDclD(A). (To see this observe first that clD(A) comprises all

the non-dispersion points of A, i.e. including any not in A, and only the

density points are in the interior. Indeed, if x is a dispersion point of A,

then x is a density point of (X\A) and so (X\A)∗ is a D-neighbourhood of

x disjoint from A; conversely, if x /∈clD(A), then there is D disjoint from A

with x ∈ D ∈ D and so x is a dispersion point of A. Finally, intDclD(A) =

(clD(A))∗.)

Measure Localization Lemma (Light version). For A measurable,

LN (A) ∈ N .

Proof. Since N := LN (A) = A ∩⋃{D : D ∈ D and A ∩ D ∈ N} and⋃{D : D ∈ D and A ∩D ∈ N} is measurable, the set N is measurable. Let

N∗ be the set of density points of N ; then N∗ ⊆ N ⊆ A, and by Lebesgue’s

(or Mueller’s) density theorem |N∗\N | = 0. If |N∗| > 0, then N∗ ∈ D. Pick

any a ∈ N∗; then, as N∗ ⊆ N, there is a D ∈ D with a ∈ D and D∩A ∈ N .

But a ∈ N∗∩D, so 0 < |N∗∩D| ≤ |A∩D| = 0, a contradiction. So |N∗| = 0,

and so |N | = 0, as asserted. ¤

Lemma 2. If a K-analytic A is dense and M-heavy in the Hausdorff
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space X, then A is co-meagre and dense, and so X is a Baire space.

Proof. As X is Hausdorff, any K-analytic set is Souslin-F (see above).

Any closed set has the Baire property (as F\int(F ) is nowhere dense), so

A has the Baire property by Nikodym’s Theorem on the preservation of the

Baire property by the Souslin operation (see again [Jay-Rog] p. 42-43). Put

A = (V \M) ∪ N with M, N in M and V open in X. As A is dense, for W

open the set A∩W is non-empty, and so also not meagre (as A is heavy). So

W ∩ V ⊇ (W ∩ A)\N is non-empty. So V is dense, and so A is co-meagre.

Since A ∩W is non-meagre for each non-empty open set W, the set V ∩W

is also non-meagre, and so X is Baire. ¤

With minor adjustments, the argument transfers to the measure case. In

fact one need only know that D is a refinement of the original topology so

that a set has the Baire property iff it is measurable, and is meagre iff it is

null (cf. [Kech] Ex. 17.47 in the case of R, or [Mar]). To obtain some more

information, we repeat this short argument. For the condition that open sets

be K-analytic, refer to Lemma 1.

Lemma 2′. In a Hausdorff space (X, T ) possessing a density topology

D refining T , if a K-analytic set A is D-dense and N -heavy, then A is

T -dense and co-null, and X is both a Baire space under D, and modulo a

null set also Baire under T . Moreover, on the complement in X of a null

set, A is T -dense and M(T )-heavy.

Proof. Any closed set is measurable (since D refines T ), so by the Luzin-

Sierpiński Theorem (see e.g. [Jay-Rog] p.42-43) A, being Souslin-F in X, is

measurable. By inner regularity of the measure we may put A := V \N with

N in N and V a Gδ under T . As A is D-dense, for W a D-open set A ∩W

is non-empty, and so also non-null (as A is heavy). So W ∩ V ⊇ (W ∩A)\N
is non-empty. So V is D-dense, hence D-co-meagre, so co-null and non-null.

Since A∩W is non-null for each non-empty D-open set W, the set V ∩W is

non-null also for W a T -open set, i.e. V ∩W is a dense Gδ in W, and so X

is T -Baire.
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If H is a null Gδ with H ⊇ N, then A′ := V \H = A\H and so A′ is

K-analytic (being an Fσ in the K-analytic set A); furthermore, A′ is dense

and heavy on X\H. ¤

Theorem A below is substantially due to van Mill [vM]; cf. Levi [Levi]

Th. 2,3. We note below its dual.

Theorem A (Analytic Baire Theorem – Category-heavy, [vM]

Prop. 2.2). In a Hausdorff space X, if An are K-analytic, M-heavy and

dense in X, then
⋂

n An 6= ∅.

Proof of Theorem A. By Lemma 2 X is Baire and each An is, modulo

a meagre set, dense open. So
⋂

n An 6= ∅. ¤

Proposition A (Analytic Baire Theorem – Measure-heavy). In a

Hausdorff space X, if An are K-analytic, N -heavy and D-dense in X, then⋂
n An 6= ∅.

Proof of Proposition A. By Lemma 2′ X is non-null and each An is

co-null. So
⋂

n An 6= ∅. ¤
Remarks. We know from Lemma 1 that in a Polish space, and more gen-

erally in an analytic metric space, open sets are analytic, so again by Lemma

2 Theorem A restricted to analytic metric spaces is equivalent to the classi-

cal (metric) Baire Theorem. The latter is standardly proved using Cantor’s

(nested sets) Theorem; in the next subsection we derive an analytic Cantor

Theorem and later in §3 combine it with van Mill’s approach to prove in The-

orem 5 a stronger analytic formulation of the Baire Theorem for Hausdorff

spaces. Before that, however, in §2 we will see why van Mill’s Theorem may

be viewed as a general topological version of the Gandy-Harrington Theorem

asserting that the Gandy-Harrington topology and other related topologies

are Baire. In §4 we conduct a similarly motivated further analysis but now

in the context of topologies that refine a metrizable topology.

Convention. Below, the new results are numbered theorems. Lettered

theorems, such as Theorem A above, denote attributed results (possibly in
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more abstract forms than originally formulated). Hybrid results, arising from

a new or unifying perspective, appear as Propositions – for instance Propo-

sition A just proved.

1.2 Analytic Cantor Theorems

The following result is implicit in a number of situations, and goes back to

Froĺık’s characterization of Čech-complete spaces as Gδ in some compactifica-

tion ([Frol-60]; see [Eng] §3.9); it may be used to lift theorems about Polish

spaces to results on analytic metric spaces and to characterize analytic sets.

For example, Froĺık in [Frol-70] Th. 2 characterizes analytic sets as intersec-

tions of a Gδ and a set that is Souslin in its Stone-Čech compactification; in

similar spirit Fremlin [Fre] develops the theory of Čech-analytic sets (cf. also

[HJR]). In the opposite direction Aarts et al. in [AdGMcD1] and [AdGMcD2]

use similar machinery to characterize completeness via compactness. Recall

that Cantor’s Theorem on the intersection of a nested sequence of closed (or

compact, as appropriate) sets has two formulations: (i) referring to vanishing

diameters (in a complete-space setting), and (ii) to (countable) compactness.

In the spirit of these, we now give two topological versions. We refer to §1.1

for notation.

Theorem 1C (Analytic Cantor Theorem). Let X be a Hausdorff

space and A = K(I) be K-analytic in X, with K compact-valued and upper-

semicontinuous.

If Fn is a decreasing sequence of (non-empty) closed sets in X such that

Fn ∩K(I(i1, ..., in)) 6= ∅, for some i = (i1, ...) ∈ I and each n, then K(i) ∩⋂
n Fn 6= ∅.
Equivalently, if there are open sets Vn in I with clVn+1 ⊆ Vn and diamIVn ↓

0 such that Fn ∩K(Vn) 6= ∅, for each n, then

(i)
⋂

nclVn is a singleton, {i} say;

(ii) K(i) ∩⋂
n Fn 6= ∅.

Proof. If not, then
⋂

n K(i)∩Fn = ∅ and so, by compactness, K(i)∩Fp =
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∅ for some p, i.e. K(i) ⊆ X\Fp. So by semicontinuity Fp∩K(I(i1, ..., in)) = ∅
for some n ≥ p, yielding the contradiction Fn ∩K(I(i1, ..., in)) = ∅. ¤

Theorem 1 has the following filterbase (finite intersection property, ‘fip’)

generalization.

Theorem 1Tr (Analytic Compactness Theorem – Trace). In the

setting of Theorem 1C, for H a filter base, if for some i and each n ∈ ω,

H0 ∈ H there is m > n and H ∈ H with H ⊆ H0 meeting K(I(i1, ..., im)),

then

K(i) ∩
⋂
{clH : H ∈ H} 6= ∅.

Proof. If not, and ∅ = K(i)∩⋂{clH : H ∈ H}, then for some finite subfam-

ily H′ we have ∅ = K(i)∩⋂{clH : H ∈ H′}, and so K(i) ⊆ ⋃{X\clH : H ∈
H′}. By upper-semicontinuity, K(I(i1, ..., in)) ⊆ ⋃{X\clH : H ∈ H′}, for

some n. AsH is a filter base, there exists H0 ∈ H with H0 ⊆
⋂{H : H ∈ H′}.

Now for some m > n and some H1 ∈ H with H1 ⊆ H0, the set K(I(i1, ..., im))

meets H1, contradicting the fact that ∅ = K(i) ∩⋂{H : H ∈ H}. ¤

The filter-base version is usually rendered employing ‘inclusion’ as below

(suggesting the shrinking ‘diameters’ of Cauchy’s criterion, ultimately the

inspiration of Froĺık’s [Frol-60]; cf. again [Eng] §3.9 and Hansell [Han-92],

§3, p. 281) rather than the ‘trace’ property above. This has a similar but

simpler proof, given below for the sake of completeness. In fact the inclusion

version implies the trace version (see the Remark below). In §3.1 we see their

duals in the Banach-Mazur ‘inclusion’ games and the Choquet ‘trace’ games.

Theorem 1Inc (Analytic Compactness Theorem – Inclusion). In

the setting of Theorem 1C, for H a filter base, if for some i each K(I(i1, ..., in))

contains a member of H, then

∅ 6=
⋂
{clH : H ∈ H} ⊆ K(i).

Proof. The inclusion is clear. If ∅ = K(i) ∩ ⋂{clH : H ∈ H}, then

for some finite subfamily H′ we have ∅ = K(i) ∩⋂{clH : H ∈ H′}, and so
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K(i) ⊆ ⋃{X\clH : H ∈ H′}. By upper-semicontinuity, K(I(i1, ..., in)) ⊆⋃{X\clH : H ∈ H′}, for some n. But K(I(i1, ..., in)) ⊇ H0 for some (non-

empty!) H0 ∈ H, and so ∅ = H0 ∩ H ′ for each H ′ ∈ H′, contradicting

the fact that H is a filter sub-base, unless H′ = ∅. But then K(i) = ∅ ⊇
K(I(i1, ..., in)) ⊇ H0 , giving a final contradiction. ¤

Remark. To see why Theorem 1Incl implies 1Tr, consider a filter base

H with the trace property of Theorem 1Tr relative to i ∈ I. One may pick

for each H0 ∈ H and n ∈ N an integer m = m(n) > n and a set H =

Hn(H0) ⊆ H0 in H such that Hn
i (H0) := H ∩ K(i1, ..., im(n)) 6= ∅. Then

{Hn
i (H0) : n ∈ N, H0 ∈ H} is a filter sub-base satisfying the hypothesis of

Theorem 1Incl and so

∅ 6= K(i) ∩
⋂
{clHn

i (H0) : n ∈ N, H0 ∈ H} ⊆ K(i) ∩
⋂
{clH0 : H0 ∈ H}.

A similar argument can be conducted with a weaker hypothesis by ex-

ploiting the compactness of K<(i) (defined in §1.1).

Theorem 1Cpt. In the setting of Theorem 1C, suppose now that the

nested sequence Fn satisfies Fn∩K(I<(i1, ..., in)) 6= ∅, for some i = (i1, ...) ∈
I and each n. Then K<(i) ∩⋂

n Fn 6= ∅.
Equivalently, if there are open sets Vn in I with H :=

⋂
nclVn non-empty

compact such that Fn ∩K(Vn) 6= ∅ for each n, then K(H) ∩⋂
n Fn 6= ∅.

Proof. If not, then K<(i)∩⋂
n Fn = ∅. Since K<(i) is compact, K<(i)∩

Fp = ∅, for some p. By upper-semicontinuity, for each j ∈ I<(i) there is n(j)

such that K(j|n(j)) ⊆ X\Fp. Since I<(i) is compact, there are j(1), ..., j(t)

in I<(i) and integers ns = n(j(s)) such that {I(j(s)|ns) : s = 1, ..., t} is a

finite open covering of I<(i). Put q = p + maxs≤t ns.

For j ∈ I<(i|q), consider j′ with j′|q = j|q and j′ ∈ I<(i). (For instance,

take j′ = j1, ..., jq, iq+1, iq+2, ....) Refer to the finite covering to find s with

j′|ns = j(s)|ns . Then K(j|q) ⊆ K(j(s)|ns) ⊆ X\Fp. So K(I<(i|q)) ⊆ X\Fp,

and in particular K(I<(i|q)) ∩ Fq = ∅, a contradiction. ¤
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The following generalization of Th. 1 is at the heart of both the proof of

the Gandy-Harrington Theorem (see §2.2) and likewise of van Mill’s proof of

the Analytic Baire Theorem, Th. A above.

Theorem 2 (Multiple Analytic Targets - Trace Theorem). Let X

be a Hausdorff space and An = Kn(I) be K-analytic in X, with Kn taking

singleton or empty values and upper-semicontinuous.

If Fn is a decreasing sequence of (non-empty) closed sets in X such that

Fn ∩
⋂

m≤n

Km(I(i1, ..., in)) 6= ∅,

for some i = (i1, ...) ∈ I and each n, then
⋂

n Fn ∩
⋂

n An(i) 6= ∅.

Proof. If not, write Hn := Kn(i) and Kn(i) := {xn} (whenever Kn(i)

is non-empty). By compactness, since
⋂

n(Fn ∩ Hn) = ∅, there is p with

Fp∩
⋂

n≤p Hn = ∅. If xm /∈ Fp or Hm = ∅ for some m ≤ p, then Km(i) ⊆ X\Fp,

and so Fp∩Km(In(i|n)) = ∅ for some n > p+m. Then Fn∩Km(In(i|n)) = ∅,
a contradiction. So xm ∈ Fp for all m ≤ p. Since Fp ∩

⋂
n≤p Hn = ∅, for some

m,m′ we have xm 6= xm′ . As X is Hausdorff, for some disjoint U, V we have

xm ∈ U and xm′ ∈ V . So for some n > m + m′ + p we have Km(i|n) ⊆ U

and Km′(i|n) ⊆ V. So Fn ∩Km(i|n) ∩Km′(i|n) = ∅, a contradiction. ¤

We generalize the last result beyond the singleton-valued to the compact-

valued case, which needs a separation lemma. (This generalizes the well-

known result that in a Hausdorff space disjoint compact sets may be sepa-

rated by disjoint open sets – cf. Kelly, [Kel] Th. 5.9.) The next result is

shown for regular Hausdorff spaces in [DJRO] (in the course of a proof of Th.

1 there). We work in subspaces that are K-analytic, so the following more

intuitive proof applies. Recall from Lemma 1 that an K-analytic space A is

Lindelöf and that a regular Lindelöf space is normal (cf. Kelly, [Kel] Lemma

4.1). So a regular K-analytic space A is normal.

Lemma 3 (Separation Lemma). In a normal space, and so also in a

locally compact Hausdorff space X, for an ordered finite sequence of compact
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sets 〈K1, ..., Kn〉 with empty intersection, there is a corresponding ordered

finite sequence 〈U1, ..., Un〉 of open sets with empty intersection such that

Ki ⊆ Ui.

Proof. Suppose given the compact sequence 〈K1, ..., Kn〉. First assume

that X is normal. For each i the set Ki is disjoint from the set K−i :=⋂
j 6=i Kj. Let fi : X → [0, 1] be a continuous function with zero set Ki such

that fi(K−1) = 1 and f :=
∑

i≤n fi; then f(x) = 0 iff x ∈ ⋂
i≤n Ki, and

so f > 0 on X. Then Ui := {x : fi(x) < f(x)/n} is open and Ki ⊆ Ui.

If x ∈ ⋂
i≤n Ui, then summing the relations fi(x) < f(x)/n we obtain the

contradiction that f(x) < f(x).

Now assume that X is locally compact and Hausdorff; we may choose U

open containing
⋃

i≤n Ki with Y =clU compact. As Y is normal, we may

find Vi in Y separating the Ki as required. Taking Ui = Vi∩U we obtain the

desired separation in X. ¤

Remark. Here is an alternative proof of the locally-compact case. Sup-

pose otherwise; then there is 〈K1, ..., Kn〉 with empty intersection, such that

for each corresponding ordered finite sequence U := 〈U1, ..., Un〉 of open sets

there is a point xU in their intersection. Again without loss of generality we

may assume the sets Ki all lie in a compact Hausdorff subspace Y . Direct

(upwards) the family U of ordered finite sequences 〈U1, ..., Un〉 of open sets

with Ki ⊆ Ui by taking U ≤ V iff Um ⊇ Vm for each m (cf. [Kel] Ch. 2). By

compactness, there is a subnet 〈xU : U ∈ U ′〉 with a cluster point x (cf. [Kel]

Th. 5.2). We claim that x ∈ Km for each m. Fix i ≤ n ; if x /∈ Ki then there

is an open set Vi with x /∈clVi such that Ki ⊆ Vi. For j 6= i put Vj = Y. Since

Y \clVi is an open nhd (in Y ) of x, there is W ∈ U such that xU ∈ Y \clVi

for U ≥ W with U ∈ U ′. But for each U ∈ U ′ with U ≥ V and U ≥ W (i.e.

for U ∈ U ′ such that Um ⊆ Vm ∩Wm for each m), we have xU ∈
⋂

m Um. In

particular, xU ∈ Ui ⊆ Vi, which contradicts xU /∈clVi. So x ∈ Km for each

m, contradicting the non-existence of an open separating sequence. ¤

We now give the promised generalization of Th.2 from singleton-valued

to compact-valued representations.
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Theorem 2′ (Multiple K-Analytic Targets - Trace Theorem). Let

X be regular Hausdorff and An = Kn(I) be K-analytic in X, with Kn

compact-valued and upper-semicontinuous. If Fn is a decreasing sequence

of (non-empty) closed sets in X with

Fn ∩
⋂

m≤n
Km(i1(m), ..., in(m)) 6= ∅,

for some i(n) = (i1(n), ...) ∈ I and each n, then
⋂

n Fn ∩
⋂

n Kn(i(n)) 6= ∅.

Proof. If not, write Hn := Kn(i(n)). Put Y =
⋃

n Hn. As Y contains the

sets Fn∩
⋂

m≤n Km(I(i1(m), ..., in(m))), and regularity is subspace hereditary,

we may as well assume that X = Y. By compactness, since
⋂

n(Fn∩Hn) = ∅,
there is p with Fp ∩

⋂
n≤p Hn = ∅. If Fp ∩ Hm = ∅ for some m ≤ p, then

Km(i(m)) ⊆ X\Fp, and so Fp∩Km(I(i(m)|n)) = ∅ for some n > p+m. Then

Fn∩Km(I(i(m)|n)) = ∅, a contradiction. So the compact set H ′
m := Fp∩Hm

is non-empty for each m ≤ p. Since
⋂

n≤p H ′
n = ∅, for some open in Fp sets

Um ⊇ H ′
m we have

⋂
n≤p Un = ∅ (by Lemma 3 as X is now assumed Lindelöf,

and so normal). So for some n > p we have Fp ∩Km(i(m)|n) ⊆ Um for each

m ≤ p, and so Fn ∩
⋂

n≤p Km(i(m)|n) = ∅, a contradiction. ¤

1.3 K-analytic sets: the non-separable variant

Recall that a metric space S is said to be absolutely analytic, or just analytic,

if it is Souslin-F(S∗), i.e. is Souslin in its completion S∗. In a non-separable

complete metric space X it is not possible to represent a Souslin-F(X) subset

as a K-analytic set relative to I = NN. Various aspects of countability need

generalization, as we now recall, harking back to A. H. Stone’s result that

in a metric space, an open cover has a σ-discrete refinement (and to Bing’s

characterization of metric spaces as regular Hausdorff spaces with σ-discrete

bases). We refer to the survey paper [St2] and the more recent [Han-92]; this

section is meant as a brief excursion enabling comments to the effect that

the primarily separable account here is capable of generalization, although

at the cost of an expanded technical apparatus (utilizing the approach to

analyticity developed in [HJR]).
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An (indexed) family of subsets H := {Ht : t ∈ T} of a space X is index-

discrete if every point of X has a neighbourhood meeting at most one set Ht

(i.e. meets Ht for at most one index t). The family H is σ-discrete in X if

H =
⋃

nHn where each indexed family Hn = {Hn
t : t ∈ Tn} is index-discrete

in X.

Denoting by wt(X) the weight of the space X (i.e. the smallest cardinality

of a base for the topology), replacing I = NN by J = κN for κ = wt(X),

consider sets S with the following extended Souslin representation, which

might be termed more precisely a σ-discrete κ-Souslin representation:

⋃
j∈J

F (j), where F (j) :=
⋂

n∈N
F (j|n),

and where the determining system 〈F (j|n)〉 consist of closed sets with the

following two properties:

(i) {F (j|n) : j|n ∈ κn} is σ-discrete in X for each n,

(ii) diamXF (j|n) < 2−n, so that F (j) is empty or single-valued, and so

compact.

Then, by a theorem of Hansell [Han-73a], the Souslin-F(X) sets are charac-

terized as those having just such an extended Souslin representation, with

κ = wt(X). (For other equivalent representations, including a weakening of

σ-discreteness of the family in (i) to relative to its union rather than relative

to X, see [Han-73b] and [Han-73a].) That is, working relative to J the corre-

sponding extended Souslin sets exhibit properties similar to the K-analytic

sets relative to I. By Hansell’s characterization theorem and Nikodym’s the-

orem, again as in §1.1, sets with a σ-discrete κ-Souslin representation have

the Baire property. Furthermore, in view of Banach’s Localization Principle

(§1.1), category considerations may be applied to σ-discrete decompositions

of the sets in a family (see definition below), in much the same way as they

are applied to countable decompositions in relation to σ-ideals of meagre

sets for the purposes of heavy localization (for which see [Ost-LBIII, Th. 1]).

Finally, since F : J → K(X) above is upper-semicontinuous, the Analytic

Cantor Theorems of the preceeding section continue to hold as defined below.

Here the mapping F has properties additional to upper-semicontinuity, such
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as co-σ-discreteness on J, or index-σ-discreteness on a closed subset of J (see

below for these terms).

From this perspective, Hansell, Jayne and Rogers [HJR] (cf. [FH]) de-

velop a theory of K-analytic sets relative to J ; a brief summary adequate

for the current needs follows. Call a subset A of a Hausdorff space X K-

analytic in X relative to J, if A = K(J) for some upper semicontinuous

K : J → K(X) such that {K(J(j|n)) : j|n ∈ κn} is σ-discrete (or, equiva-

lently, σ-discretely decomposable – see below for this term). Note that the

σ-discreteness condition is relative to X, being a requirement that refers to

all points of X, not just those in A. In a Čech-complete space X, such sets

are characterized, necessarily relative to X, as being ‘subparacompact in X’

(rather than Lindelöf) and ‘Souslin-F in X’. Here A is ‘subparacompact in

X ’ means that every relatively-open cover of A has a refinement that is σ-

discrete in X. (Thus a regular Hausdorff space X is subparacompact in itself

iff it is subparacompact in its usual unrelativized sense, for which see [Eng,

5.5.3 (Remark)], or [Bur-1]; cf. [Bur-2].) If X is K-analytic in itself, then its

K-analytic subsets are exactly its Souslin-F sets (see [HJR] Th. 18).

Theorem 1J . The variants 1C, 1 Inc,1Tr of Theorem 1 above, (i.e. all

but 1Cpt) hold mutatis mutandis as follows:

(i) ‘J = κN’ replaces ‘I = NN’,
(ii) ‘K-analytic relative to J ’ replaces ‘K-analytic relative to I’

(iii) ‘complete metric space of weight at most κ’ replaces ‘Polish space’.

The proofs of Theorem 2 and 2′ above used the fact that K-analytic

spaces are Lindelöf and that a regular Lindelöf space is normal. But we

noted that the separation result in Lemma 3 has an alternative proof when

the underlying spaces are regular Hausdorff. We thus have:

Theorem 2J . For the class of regular Hausdorff spaces the two variants

of Theorem 2 hold mutatis mutandis as in Theorem 1 J .

We close this section by defining some terms referred to above in the

discussion.
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Definition ([Han-74], §3; cf. [Han-71] §3.1 and [Mich82] Def. 3.3).

1. Call f : X → Y base-σ-discrete (or co-σ-discrete) if the image under

f of any discrete family in X has a σ-discrete base in Y.

2. Say that an indexed family A := {At : t ∈ T} is σ-discretely decom-

posable if there are index-discrete families An := {Atn : t ∈ T} such that

At :=
⋃{Atn : t ∈ T}.

3. ([Mich82] Def. 3.3.) Call f : X → Y index-σ-discrete if the image

under f of any index-discrete family in X is σ-discretely decomposable in Y.

In (3) above f has a stronger property than co-σ-discreteness. (For a

proof see [Han-74] Prop. 3.7 (i).) This can at times be more convenient, and

in any case the concepts are close, since for metric spaces and κ an infinite

cardinal: X is a base-σ-discrete continuous image of κN iff X is an index-σ-

discrete continuous image of a closed subset of κN. (See [Han-92] Th. 4.2, or

[Han-74] Th. 4.1.) Moreover, base-σ-discrete continuous maps (in particular

index-σ-discrete continuous maps) preserve analyticity ([Han-74] Cor. 4.2);

compare also [HJR, Th. 7].

2 Analytically heavy topologies

The theoretical setting of this section is a first topology T that is Hausdorff

and regular, and a second finer topology T ′ whose members are ‘almost’

(i.e. up to a meagre set) generated by the K-analytic sets of T . (See [LMZ]

for a monograph treatment of a ‘bitopological’ view; especially see their Th.

4.2.) However, our motivating examples (listed as Examples A below) are

various topologies on R refining T the standard (Euclidean) which share the

common feature of being generated by analytic sets. These examples are

submetrizable: they refine a metrizable topology. In Examples B at the end

of this section we consider two examples that are not submetrizable. As

noted in §1, analytic sets in R are all T -circumscribed. The aim below is to

see the Gandy-Harrington Theorem as again a van Mill Theorem A, since

the former relies on an intersection of analytic sets being non-empty.
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We focus here on refinement topologies T ′, including the topology T itself,

with the property that for each non-empty V ∈ T ′ there is a K-analytic

subset of (X, T ), i.e. A ∈ A(T ) in the notation below, with ∅ 6= A ⊆ V.

This natural ‘weak base’ property is of particular interest, as it falls short of

requiring open sets in T ′ to be K-analytic in T (equivalently, by Lemma 1,

Fσ in T ). A good example, considered below, is the density topology D of §1.

Reflecting the motivation of this paper, we call such refinement topologies

analytically heavy (see definition below).

In §4 we consider specifically submetrizable fine topologies T ′, i.e when

T is Td, the topology generated by a metric d (so that A(T d) comprises the

analytic sets). But there we focus on other inter-relations between the two

topologies, motivated in Examples C.

Definitions (K-analytically heavy topologies). 1. For (X, T ) a

topological space denote by A(T ) the family of K-analytic subsets of (X, T ).

2. H is a topological base for X if ([Eng] §1.1) H covers X, and for

H1, H2 ∈ H, whenever x ∈ H1∩H2, there is H3 ∈ H with x ∈ H3 ⊆ H1∩H2.

We write GH for the topology generated by H.

3. B is a weak base for a topology T if for each non-empty V ∈ T there

is B ∈ B with ∅ 6= B ⊆ V. In fact, sometimes we need only a very weak base:

for each non-empty V ∈ T there is B ∈ B with ∅ 6= B ∩ V. See Remark 1

below.

4. Let (X, T ) be a regular Hausdorff space and T ′ ⊇ T a refinement

topology. We say T ′ is analytically heavy, or weakly K-analytically generated

in T , if T ′ possesses a weak base H ⊆ A(T ), all of whose elements have a

T ′-open representation, i.e. an upper semicontinuous representation K : I →
K(X) with K(U) ∈ T ′ for U open in I.

Remarks. 1. In this bitopological context we refer to (X, T ) as the

ground space and (X, T ′) as the refinement.

2. As to T ′-open representations, note that for any A ∈ Gd(R) that

is dense in itself (i.e. is IFin-heavy, for IFin the ideal of finite subsets of

X), Kuratowski [Kur-34] (cf. [Jay-Rog] Th. 2.4.1) constructs an upper
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semicontinuous representation K with K(I(i|n)) a non-empty intersection of

an open set G(i|n) and a dense-in-itself closed subset F (i|n) of A of diameter

at most 2−n. This construction may be repeated verbatim, ensuring also

that F (i|n) has diameter at most 2−n in some complete metric on A and is

I-heavy for a larger ideal (i.e. using ‘generalized condensation points’, cf.

[Mar1]). In particular this is available for the weak bases H corresponding to

the E l, D, and R topologies below, where H consist of Gδ subsets that are I-

heavy, for I = IFin and I = N . (In fact the Kuratowski F -G-representation,

being also ‘disjoint’, yields an Fσδ representation, cf. [Jay-Rog] Prop. 5.7.3.)

3. If the weak base H in (2) is actually a base, then we say that T is a

generalized Gandy-Harrington topology. (See §2.1 below.)

2.1 Examples A: Submetrizable Examples

1. A complete separable metric ground space. For (X, Td) with Td generated

by a complete separable metric d on X, the standard basis H of all open

(analytic) balls yields GH = Td.

2. (a) The Gandy-Harrington topology GH. For H the countable family

of analytic subsets of R which are effective relative to a given real α (i.e.

Σ1
1(α)), we obtain the Gandy-Harrington topology GH. For background on

the standard Gandy-Harrington case GH and variants, see e.g. [Lou] Prop.

6, or [MK], Section 9.3.

(b) Any subfamily H of A(R) closed under intersection, including A(R)

itself, is a base for a topology in the sense of Definition 2 above.

3. Density topology. For I = N , we may take H = D ∩ Gδ(X) as a base

for D. (The space is covered, as the usual open intervals are in D. If H1

and H2 are D-dense, and so metrically dense on H3 = H1∩H2 and N -heavy,

then H3 is N -heavy, by Theorem 4 below.) Here GH = D. Unlike in GH, the

open sets of D are not analytic in the ground space, although the basic sets

of H are.

4.(a) The Ellentuck topology, E l. The points of this space lie in Cantor

space 2N, the latter equipped with the Euclidean topology. The points of
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2N are interpreted as indicator functions of subsets of N. More specifically,

one considers only the points corresponding to infinite subsets of N, denoted

[N]ω. This subspace is a Gδ in 2N, so is topologically complete; indeed, if 〈fn〉
enumerates [N]<ω, the family of all finite subsets of N, then [N]ω =

⋂
n{1S ∈

2N : 1S 6= 1fn}.
The refinement topology on [N]ω, called the Ellentuck topology after one

of its authors ([Ell], see also Louveau [Lou1] and the more recent [Rear]),

is generated by taking for H the closed subsets [a,A] := [N]ω ∩ {1S ∈ 2N :

a ⊆ S ⊆ a ∪ A} for a finite and A ⊆ N\{0, 1, ..., max a} infinite. Note that

A = N\{0, 1, ..., max a} gives a set in the usual Cantor basis.

If I = {∅}, then (not ulike the case 2(b) above) H is I-heavy. The

space is Choquet and so Baire ([Kech], 19.13 and 8.12); the latter will be

confirmed in Theorem 3 below. The topology yields a ‘short-cut’ for a proof

of the Silver-Mathias Theorem that analytic sets (in the ground space) have

the Ramsey property – see the remarks below.

(b) Unlike GH, the Ellentuck topology is generated by a continuum of

analytic (in fact Gδ) sets; a countable effective coarsening of significance has

been studied in [Avi].

5. O’Malley’s r-topology (or resolvable-topology). To study approxi-

mate differentiability of real-valued functions, O’Malley [O] introduces the

r-topology R on R with R ⊆ D; it is generated by taking as base B:=

D ∩ Gδ∩Fσ the sets of D that are ambiguously both Gδ and Fσ in the real

line. (For these, see also [St1] Th. 10. Recall that in a complete metric space

a set that is both Gδ and Fσ may be characterized as resolvable – see [Kur-1]

§12. III, V.) For other aspects see §4. It is a generalized Gandy-Harrington

topology, avant la lettre.

2.2 Generalized Gandy-Harrington Theorem

The argument for Theorem 3 below repeatedly uses the fact that if
⋃

n An ∩
B 6= ∅, then An ∩ B 6= ∅ for some n. We view this as saying that I = {∅}
has the localization property and

⋃
n An is I-heavy on B. This motivates an

I-refinement variant for a general σ-ideal, which we give as Theorem 3′ in
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§4.

Theorem 3 (Generalized Gandy-Harrington Theorem). In a reg-

ular Hausdorff space, if T ′ is an analytically heavy refinement topology of T
(i.e. possessing a weak base H ⊆ A(T ) ∩ T ′ whose elements have T ′-open
representation), then T ′ is Baire.

In particular, this applies to a Polish space, the Gandy-Harrington GH,

the density D, the Ellentuck E l and the O’Malley R topologies.

Proof. We use the notation of §1.1 and also put In := Nn = {i|n : i ∈ I}.
For each n, let Wn be dense and open in T ′. Suppose inductively that for all

m ≤ n there are upper-semicontinuous compact-valued maps Gm : I → X

which are T ′-open such that Gm(I) ⊆ Wm with Gm(I) ∈ H, σn(m) ∈ In for

m ≤ n, and

G1(σn(1)) ∩ ... ∩Gn(σn(n)) 6= ∅.
Then

Un := G1(σn(1)) ∩ ... ∩Gn(σn(n)) 6= ∅ and Un ∈ T ′.

As Un is non-empty and open in T ′ and Wn+1 is T ′-dense, Wn+1 ∩ Un 6= ∅.
Since H is a weak base, there is An+1 ∈ H with ∅ 6= An+1 ⊆ (Wn+1 ∩ Un) ⊆
Wn+1 and in particular An+1 ∩ Un 6= ∅. Taking An+1 = Gn+1(I) with Gn+1

a T ′-open representation and noting that Gn+1(I) =
⋃{Gn+1(σ) : σ ∈ In},

there is σn(n + 1) ∈ In such that

G1(σn(1)) ∩ ... ∩Gn(σn(n)) ∩Gn+1(σn(n + 1)) 6= ∅.

But Gm(σn(m)) =
⋃

k Gm(σn(m), k). So there are extensions σn+1(m) of

σn(m) for each m ≤ n + 1 such that

G1(σn+1(1)) ∩ ... ∩Gn+1(σn+1(n)) 6= ∅.

This verifies the induction step. So for each m there is i(m) ∈ I with i(m)|n =

σn(m) for each n. Applying Theorem 2′ in the ground space (taking Fn = X),

we have

∅ 6=
⋂

m
Gm(i(m)) ⊆

⋂
m

Am ⊆
⋂

m
Wm.
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For W an arbitrary non-empty open set in T ′, as the set Wn∩W is T ′-dense

on W, we conclude by the preceeding argument that ∅ 6= W ∩⋂
m Wm. So T ′

is Baire. ¤

Remarks. 1. In the case of the Gandy-Harrington topology, the mem-

bers of H are analytic sets with representations Km such that each of the sets

Km(i|n) is also inH, so open by fiat in T ′ = GH. That is, the representations

are T ′-open.

2. In the proof above, when T ′ = T (with T regular) and H is a very

weak base, then one may first select ∅ 6= Vn+1 ∈ T with Vn+1 ⊆clVn+1 ⊆
Wn+1 ∩ Un; so if An+1 ∩ (Wn+1 ∩ Vn) 6= ∅ for some An+1 ∈ H, then ∅ 6=
A′

n+1 := An+1∩clVn+1 ⊆ Wn+1 and A′
n+1 is analytic. The proof may be

modified provided both A′
n and An are T ′-circumscribed.

3. There is a natural connection between topologies and the partially

ordered sets in forcing (see [Je]). Category and measure correspond respec-

tively to generic constructions of Cohen reals and Solovay reals (or random

reals); in like manner the Gandy-Harrington topology corresponds to generic

constructions (of minimal ‘degrees’) via Gandy forcing – see e.g. [Mil] Ch.

30 for a modern treatment.

4. The Ellentuck topology corresponds to the generic construction of

Mathias reals (i.e. via Mathias forcing, [Math]), in relation to a Ramsey

property of a class of subsets S of reals. The fine topology provides a direct

interpretation of a combinatorial property: S has the Ramsey property iff

S has the Baire property under the Ellentuck topology. In particular, as

sets closed in the ground space are closed in E l, it follows from the Nikodym

theorem (see §1.1) that analytic sets in the ground space have the Baire

property in E l, and hence also the Ramsey property, a fact originally proved

by Silver, and generalized by Mathias, but these authors employ techniques

from mathematical logic. (See [Ell] and [Lou1] for the topological approach.)

To define the combinatorial property, identify the real 1S with S and [a,A]

with {S : a ⊆ S ⊆ a∪A}. A set S of ‘reals’ S in [N]ω has the complete Ramsey

property if, for any finite a and infinite A (as previously), there is an infinite

A′ ⊆ A such that either [a,A′] ⊆ S or [a,A′] ⊆ [N]ω\S. In the language
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of colours, S paints the infinite subsets of N with two colours (according to

inclusion or exclusion), and exhibits the following monochromatic property

for each finite a : any infinite A avoiding {0, ..., max a} has a monochromatic

subset.

See [Paw] for a topological proof of a parametrized version.

5. See [Kech] Th. 25.18 and 25.19 for Becker’s Theorem ([Bec] Th. 1.2),

that for a second-countable extension T of a Polish space (X, Td), the topol-

ogy T is strong Choquet iff T ⊆ A(Td). We review this remark in another

context in the Remark 5 in §5.1.

2.3 Examples B: Two non-submetrizable examples.

A regular Hausdorff space which is locally countable and locally compact

is (being locally metrizable and and locally compact) locally a completely

metrizable space, so Baire. This illustrates the theorem, as such a space is

analytically heavy, because it possesses a weak base of the kind considered

above. Indeed, in a locally metric space a one-point isolated set has G-open

analytic representation, from which it follows that a countable light-part has

Kuratowski F -G-representation that is G-open.

1. In the case of the set of countable ordinals, ω1 with the interval (order)

topology T<, every dense open set contains the (isolated) set of successor

ordinals, so the space is Baire rather obviously. We will refer to the fact that

under T< any two uncountable sets have a common limit point (so, if closed,

must meet).

2. We pass to a refinement (so also a locally countable topology), that is

locally compact and separable: the Ostaszewski space (ω1, T♣), constructed

under the assumption of an additional set-theoretic axiom (for which see

[Ost-1], or [JR] §5.3, [MER]). Here every open set (and so every closed set)

is either countable or co-countable. So any two uncountable closed sets, being

both co-countable, must meet. The space is Baire, being locally completely

metrizable, as above.

Neither example is submetrizable. For if either topology were to refine

a metrizable topology Td, then Td would need to be separable. For T♣,
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which is separable, this is immediate. For T<, if Td were non-separable, there

would exist an uncountable ε-separated subset Z, for some ε > 0. The

Td-closures of any two uncountable disjoint subsets Z1, Z2 of Z, being T<-

closed and uncountable would, as observed earlier, have a point in common,

x say, contradicting ε-separation (since Bε/2(x) then contains points zi ∈ Zi

that are not ε-separated). In the separable topology Td the set H(ω1) of

condensation points (i.e. the I-heavy points, for I the σ-ideal of countable

sets) forms a non-empty perfect set, and so (ω1, Td) contains two disjoint

uncountable closed sets. But these two Td-closed sets are also closed in the

refinement topologies T♣ or T<, and so must meet, contradicting disjointness.

We consider in Examples C of §4 the Kunen line, a related submetrizable

example which is also locally compact and locally countable (a refinement

topology on R). Evidently the theorem applies.

3 Analytic Baire from Analytic Cantor

We recall some results of van Mill from [vM]. The first is adapted to a general

σ-ideal I, but, except in §4, we usually take I to be M.

Lemma 4 ([vM], Prop. 1.1). For A dense and I-heavy and M ∈ I, the

set A\M is dense and I-heavy.

Proof. If not, then for some V that is non-empty open (A\M)∩ V ∈ I,

which includes the possibility that (A\M) ∩ V = ∅. But then V ∩ A ⊆
M ∪ [(A\M) ∩ V ] ∈ I, a contradiction to A being I-heavy. ¤

The following result for A analytic goes back to Levi [Levi] – see §5.4; here

we follow the form which van Mill [vM] uses, but must disaggregate the result

into two components (Propositions L1 and L2), corresponding to the domain

and image of an upper-semicontinuous representation of a heavy and dense

analytic set. The Corollary below verifies that their recombination implies

van Mill’s original result. Let I be a σ-ideal; except in §4, this will usually

be M. The next definition is motivated by Levi’s extraction (sketched in
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Comment 5.4) from a given continuous map K of a ‘submap’ K|S with the

direct Baire property (taking open sets to Baire sets), whence the term I-

faithful below. However, Proposition L1 identifies a minimal closed domain

S defining the submap; thus the submap is irreducible over G in the sense

that, for any proper closed subset S ′ of S, the image K(S ′) is not equal

modulo I to K(S) (as G ∩ K(S\S ′) /∈ I); cf. [Eng] Ex. 3.1.C. One may

equally well term the submap I-irreducible on G (as in [Ost-ACE]).

Definition. For a K-analytic set A in X with upper-semicontinuous

representation K : I → A and A ∩G /∈ I for some open G ⊆ X, say that K

is I-faithful on G over S (or I-irreducible on G) if G ∩ K(S ∩ V ) /∈ I for

each open V meeting S.

Proposition L1 (I-faithful/I-irreducible representation). For A =

K(I), with K : I → ℘(X) arbitrary, and G ⊆ X such that A ∩G /∈ I, there

is a minimal closed subspace S such that G ∩K(S ∩ V ) /∈ I for each open

V meeting S. In particular, A′ := K(S) differs from A on G by a set in I.

Furthermore, if A is dense and I-heavy in G, then so is A′.

Proof. For A = K(I) as above, let W :=
⋃{V : V is open and K(V ) ∩

G ∈ I}. If B is a countable basis for I, then

W :=
⋃
{V : V ∈ B is open and K(V ) ∩G ∈ I},

and so

G ∩K(W ) :=
⋃
{G ∩K(V ) : V ∈ B is open and K(V ) ∩G ∈ I}

is in I. Note that W is identifiable as the maximal open subset of I such

that if K(V ) ∩G ∈ I for any open V ∈ B then V ⊆ W.

Now S = I\W is topologically complete. For V ⊆ I\W non-empty and

open in I\W, write V = (I\W ) ∩ U with U open in I. As U ⊆ V ∪ W,

for K(V ) ∩ G ∈ I one has G ∩ K(U) ⊆ G ∩ (K(V ) ∪ K(W )) ∈ I. So

G ∩K(U) ∈ I, and so U ⊆ W and V = ∅. So K(V ) ∩G /∈ I. Thus S is the
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minimal closed subset of I such that G∩K(V ) /∈ I for any open V meeting

S. Finally, A′ := K(S) /∈ I and G ∩ (A\A′) ⊆ G ∩K(W ) ∈ I.

The last assertion follows from Lemma 4 applied in the space G, since

G ∩ (A\A′) ∈ I. ¤

The following result rests on the Category Localization Lemma of §1.

Proposition L2 (Heavy Localization). If A is non-meagre in X,

then there is a non-empty open set H, namely int(cl(A)), such that A is

heavy and dense on H, i.e. A ∩H is heavy and dense in H.

Proof. Indeed H :=int(cl(A)) is non-empty, as A is not nowhere dense.

Also A ∩H is dense in H. Put

MH(A) :=
⋃
{G ∩ A : G ⊆ H, G open and G ∩ A meagre},

which is meagre. So B := (A ∩H)\MH(A) is heavy on H. Indeed, if for G

non-empty and open in H the set B ∩ G is non-empty and meagre, then,

since B ∩G = (A∩G)\MH(A), one has A∩G ⊆ (B ∩G)∪MH(A), which is

meagre; but then A∩G ⊆ MH(A), so B∩G = ∅, a contradiction. A fortiori,

the larger set A ∩ G is non-empty and non-meagre, and so A ∩ H is heavy

on H. ¤

Corollary (Faithful/Irreducible dense-heavy representation). In

the setting of Propositions L1 and L2 with G = H = X and I = M, if K(I)

is dense and M-heavy, then there is a minimal closed subspace S of such

that K(S ∩ V ) is non-meagre for each open V meeting S.

Proof. As A′ = K(S) differs from A on X by a meagre set, H ∩ A′ is

dense and heavy, by Lemma 4. ¤

For completeness, we note the following result, which is an immediate

corollary (a generalization of S. Levi Th. 6 in [Levi]; cf. §5.4; see also

[Ost-AB] for further generalizations). It motivates work in §4, where argu-

ments are conducted modulo meagre sets to bring completeness into focus.
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The notion of ‘almost completeness’ is due to Froĺık in [Frol-60] (but its name

to Michael [Mich91] – see also [AL] and [BOst-N]). See [Wh] Th. 11 for its

relevance to the Choquet game below. See also the remarks on Solecki’s

dichotomy at the end of §3.2.

Proposition L3 (Almost-Completeness Theorem). A non-meagre

K-analytic space A contains a dense Gδ which is, for A completely regular,

Čech-complete.

Proof. In view of the second assertion we begin by working in any space

X in which A is dense. As clA\intclA is nowhere dense, so is A\intcl(A); by

Proposition L2, A∩intcl(A) is dense heavy in intcl(A), so contains G\M for

some dense open subset G and meagre set M , as in Lemma 2 (by the Baire

property implied by Nikodym’s Theorem, since a K-analytic set is Sousin-

F(X) – see the remarks in §1.1 – and since the intersection of two Baire sets

is Baire). Since M ∪ (A\intcl(A)) is contained in a meagre Fσ, say in
⋃

n Fn

with each Fn nowhere dense and closed, we have A ⊇ H :=
⋂

n(G\Fn), which

is a dense Gδ.

For A completely regular, we may conduct the argument in X = βA, the

Stone-Čech compactification (in which A is dense). Then H is a dense Gδ in

βA, so H is Čech-complete. ¤

The existence of a dense completely metrizable subspace in a classically

analytic space is a result that implicitly goes back to Kuratowski (by [Kur-1]

IV.2 p. 88, because a classically analytic set is Baire in the restricted sense –

Cor. 1 p. 482). Since an analytic space is a continuous image, the result may

be viewed as an ‘almost preservation’ result for complete metrizability under

continuity, in the spirit of the classical theorem of Hausdorff (resp. Văınštĕın)

on the preservation of complete metrizability by open (resp. closed) mappings

– see [HP] and [H] for the most recent improvements (based on [Mich86, §6])

and the literature. We note that Michael [Mich91, Prop. 6.5] shows that

almost completeness is preserved by demi-open maps (i.e. continuous maps

under which inverse images of dense open sets are dense).
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3.1 Choquet games: Oxtoby and van Mill Theorems

We now embark on an improvement of Lemma 2 in Theorem 4 below. The

proof uses heaviness to obtain a non-meagre part of A in some region G0 and

follows this up using Propositions L1 and L2 repeatedly in smaller regions.

The argument has a game-theoretic format. To bring this out we need a

convenient definition.

Definitions (Choquet game Ch(X; A) with target A). 1. For X a

topological space and A ⊆ X, the (weak) Choquet game Ch(X; A) has two

players, the first to move called β and the second called α, who alternately

select non-empty open sets Un in a topological space X such that their moves

create a descending sequence U0 ⊇ U1 ⊇ U2 ⊇ ... as their play, and gives a

win to player α iff A ∩⋂
n Un 6= ∅.

In a metric context, one of many equivalent definitions of the game re-

quires that ∅ 6= ⋂
n Un ⊆ A. (Dropping the non-emptiness, one obtains the

Banach-Mazur game; for historical background see [Tel].)

2. (i) Player α has a winning strategy if there is a function τ(U0, ..., U2n−1, U2n)

defined on even-lengthed descending sequences of open sets Ui of X yielding

an open set τ(U0, ..., U2n) ⊆ U2n such that the play arising from the choice

U2n+1 = τ(U0, ..., U2n) gives a win to α no matter how β plays. (That is,

A ∩⋂
n Un 6= ∅ for all {U2i}i∈ω.)

(ii) Player α has a stationary winning strategy if there is a function τ(U)

defined on the open sets U of X yielding an open set τ(U) ⊆ U such that

the play arising from the choices U2n+1 = τ(U2n) gives a win to α no matter

how β plays.

3. Say that A is a weakly α-favourable (resp. stationarily weakly α-

favourable) subspace if player α has a winning strategy (stationary winning

strategy) in the game above.

Remarks. 1. We note Oxtoby’s Theorem that α has a winning strategy

in the weak Choquet game Ch(R; A) iff A is co-meagre (see [Oxt2] Ch. 6;

[Kech] 21.C).
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2. The following strong Choquet game strengthens the game Ch(X,A):

player β selects not only U2n but also additionally a point x2n, and α’s re-

sponse U2n+1 must satisfy x2n ∈ U2n+1 ⊆ U2n, yielding a play U = 〈Un〉.
Thus β can choose whether or not α may play in the heavy part of U2n. The

winning rule here for player α is that A ∩ ⋂
n Un 6= ∅. The topology on A

is said to be strongly Choquet if α has a winning strategy, i.e. ensures that

the open sets played have a non-empty intersection. See e.g. [Kech] §8D,

which includes the result that a second-countable topology on X is Polish iff

the topology is T1, regular and strongly Choquet. (Note also Th. 8.33 there,

relating β-favourability to a non-empty light part of A when the topology on

X is submetrizable – refines a metrizable topology.)

3. The letter β aptly calls to mind that the first player sets the ‘Baire

category-test’ on the set A, which α attempts to pass. In the weak game β

cannot prevent α from playing into a dense and heavy part of U2n and this

feature is exploited in the proofs of Theorems 4 and 5 in the construction of

a winning strategy for α.

4. Theorems 4 and 5 below establish that weak α-favourability is implied

by certain forms of analyticity. See §5.1 for other Choquet games which

enable α-favourability to be an ingredient of a necessary and sufficient con-

dition characterizing certain topological spaces. (These generalize Choquet’s

result [Choq] that among metrizable spaces weak α-favourability character-

izes almost completeness – cf. Proposition L3, and Remark 1 above.) Indeed

our results may be interpreted as verifying that certain other Choquet games

yield winning strategies for α.

Lemma 5 (cf. [Wh] Th. (1); [HM], [Kech] 8.H, 21C). If X is weakly

α-favourable, then X is a Baire space.

Proof. Here A = X. For {Un}n∈ω dense open in X, let W be any non-

empty open set, and let β play G0 := U0 ∩W, which is non-empty. Player α

responds under the winning strategy τ with T1 such that T1 ⊆ W. As U0∩U1

is dense open, the set G1 := T1 ∩ U0 ∩ U1 is open and non-empty. We let β

respond to T1 with G1. Inductively, α plays Tn under τ and β responds with
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Gn := Tn∩U0∩U1∩ ...Un ⊆ Tn. Since τ is a winning strategy,
⋂

n Tn contains

a point in
⋂

n Gn ⊆ W ∩⋂
n Un. So X is Baire. ¤

Theorem 4 (Generalized Oxtoby Theorem: α-favourability). For

a regular space X, if A is K-analytic, heavy and dense in X, then X and A

are weakly α-favourable spaces and so Baire spaces. In particular, this holds

for A D-dense and N -heavy.

Proof. Suppose that A = K(I) is dense and heavy, with K a fixed

upper-semicontinuous representation of A. In the proof below we need to

describe explicitly a strategy τ for player α. We let player β select sets Gn,

and player α will respond with sets Tn := τ(Gn). (Here we suppress earlier

data from the play.) So we need to fix a countable basis B of clopen sets

for I and an enumeration {Bm} of B. We also fix a (possibly) transfinite

enumeration of a base in X.

To apply Theorem 1 we will use Propositions L1 and L2 inductively.

Let G0 any open non-empty subset of X. We select closed subspaces Sn

in I, open subsets Vn of B meeting Sn with diam Vn < 2−n, and open sets Gn

in X with clGn+1 ⊆ Gn. Here Sn is chosen minimal in Sn−1 with respect to

K(Sn∩V ) being dense and heavy on Gn∩U1...∩Un for each V ∈ B meeting

Sn, in particular K(Sn∩Vn) being dense and heavy on Gn∩U1...∩Un. Since

the sets Sn ∩ Vn are closed, their intersection contains a single point i in I.

So Theorem 1C applies, and K(i) ∩⋂
n Gn 6= ∅ contains a point of

⋂
n Un.

Given G0 played by β, we note that as A is dense and heavy, A ∩ G0 is

non-meagre. We begin the induction using Proposition L1 to take S1 minimal

closed in I with K(V ∩ S1) non-meagre on G0 for every V ∈ B meeting S1.

Referring to the enumeration of B, we pick the first element V1 ∈ B with

diam < 2−1 meeting S1. Since K(V1 ∩ S1) is not meagre on G0, it is not

nowhere dense on G0. So T1 := G0∩int(cl K(V1 ∩ S1)) is non-empty, and

K(V1 ∩S1) is dense and heavy on T1, by Proposition L2. We define τ(G0) to

be T1.

Now β responds with G1 ⊆ T1. By regularity, pick the first non-empty

G̃1 ⊆clG̃1 ⊆ G1 ⊆ T1 in the fixed base of X. As K(V1 ∩ S1) is heavy and
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dense on T1, it is non-meagre on T1, so again by Proposition L1 there is a

minimal closed subset S2 of S1 such that K(V ∩S2) is non-meagre on G̃1 for

each V ∈ B meeting S2. The process may be continued, as we now verify.

Inductively, suppose given the play by β of Gn ⊆ Tn and a canonical choice

(relative to the base of X) of G̃n ⊆clG̃n ⊆ Gn ⊆ Tn. As K(Vn ∩ Sn) is heavy

and dense on Tn, it is non-meagre on G̃n, so again by Proposition L1 there

is a minimal closed subset Sn+1 of Sn such that K(V ∩ Sn+1) is non-meagre

on G̃n for each V ∈ B meeting Sn+1. Choose the first Vn+1 in B with diam

< 2−n−1 meeting Sn+1, and note that Tn+1 := G̃n∩int(cl K(Vn+1 ∩ Sn+1))

is a non-empty subset with clTn+1 ⊆ Gn. We define τ(Gn) to be Tn+1 and

note that K(Vn+1 ∩ Sn+1) is dense and heavy on Tn+1. This completes the

inductive step.

By Lemma 5 the space is Baire. The measure analogue follows by Lemma

2′. ¤

The argument relies on knowing the irreducible representation, so does

not yield stationarily weak α-favourability. However, one may recapture

stationarity by passing to an ‘unfolding’ of the game – cf. [Kech] §21.D.

We now prove a stronger form of the Analytic Baire Theorem for K-

analytic sets using Theorem 3. Heaviness is again used to start a descent into

parts of a K-analytic set and Propositions L1 and L2 continue the process.

Again the argument is game-theoretic, for which we need a further definition.

Definition (Multiple-target Choquet game Ch(X; {Am : m ∈ κ})).
Denote by ω the least infinite ordinal. For κ ≤ ω, X a topological space, and

sets Am ⊆ X defined for m ∈ κ, the Choquet game Ch(X; {Am : m ∈ κ})
has two players, the first to move called β and the second called α, who

alternately select non-empty open sets Un in a topological space X such that

their moves create a descending sequence U0 ⊇ U1 ⊇ U2 ⊇ ... as their play,

and give a win to player α iff
⋂

n∈ω Un ∩
⋂

m∈κ Am 6= ∅.
Winning strategies and stationary winning strategies are defined as be-

fore.

Note that in the metric context, by insisting on shrinking diameters,
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one may interpret this as a game on Xκ, with target the product set Â :=∏
m∈κ Am, the moves Un coding for corresponding product sets, with Ûn :=

(Un)κ for κ finite, or Ûn := (Un)n ×Xω\n for κ infinite, since
⋂

n(Ûn ∩ Â) =∏
m∈κ(

⋂
n∈ω(Un ∩ Am)). We can no longer draw this conclusion given the

possibly distinct points um ∈ Am ∩ ⋂
n∈ω Un. This motivates the stronger

property in the next definition, facilitating an improvement on Theorem 4,

and explains why the improvement is not an equivalence.

Say that the κ-product space Â is a weakly α-favourable (resp. weakly

stationarily α-favourable) subspace if player α has a winning strategy (sta-

tionary winning strategy) in the multiple-target game above.

Theorem 5 (Generalized Oxtoby-van Mill Theorem, cf. van Mill

[vM], Prop. 2.2). For X regular and Hausdorff and An dense, M-heavy,

and K-analytic in X, the product space Â :=
∏

m Am is weakly α-favourable;

in particular
⋂

n An is dense and M-heavy. In particular, this holds for Am

D-dense and N -heavy.

Proof (from the Analytic Cantor Theorem 2). As each set An is dense

in X, each is dense in their union, so we may suppose that X =
⋃

An and

so that X is in fact normal (since a regular Lindelöf space is normal). This

means that we will be able to apply Theorem 2.

We consider first the case κ = 2 and determine a winning strategy π for

α when A1 = K1(I) and A2 = K2(I) are heavy and dense. Then A1 ∩ A2 is

heavy and dense. One then proceeds for larger κ in a similar way.

As before, let B be an enumerated basis in I, and fix a (possibly trans-

finitely) enumerated basis for X.

Let U0 be an arbitrary non-empty open set played by β.

As A1 is dense and heavy, A1 is dense and heavy on U0, and so by Propo-

sition L1 there exists a minimal closed S1 in I with K1(S1 ∩ V ) non-meagre

on U0 for every V ∈ B meeting S1.

We pick the first V1 ∈ B with diameter < 2−1 meeting S1. Now K1(S1∩V1)

is non-meagre in U0. Put T1 := U0∩int(clK1(S1 ∩ V1)); then K1(S1 ∩ V1) is

heavy and dense on T1. By regularity, we may pick a first non-empty G′
0
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with G′
0 ⊆clG′

0 ⊆ T1 ⊆ U0. Then K1(S1 ∩ V1) is heavy and dense in G′
0.

As A2 is heavy and dense, A2 is dense and heavy on G′
0, and so there

is a minimal closed S ′1 in I such that K2(S
′
1 ∩ V ) is non-meagre in G′

0 for

every V ∈ B meeting S ′1. Pick the first V ′
1 ∈ B with diam < 2−1 such that

K2(S
′
1 ∩ V ′

1) is non-meagre in G′
0. Put T ′

1 = G′
0∩intclK2(S

′
1 ∩ V ′

1), which is

non-empty; then K2(S
′
1∩V ′

1) is heavy and dense on T ′
1. By regularity, we may

pick the first (in the basis for X) non-empty G1 with G1 ⊆clG1 ⊆ T ′
1 ⊆ G′

0.

We let π(U0) be G1.

We continue with this two-sets-at-a-time process, inductively selecting, in

response to a given sequence of sets Un, decreasing ‘minimal’ closed subsets

Sn, S ′n and ‘earliest’ open sets Vn, V ′
n in B with diameters less than 2−n and

in X, open sets Tn, T
′
n and Gn ⊇ G′

n such that (i)-(iv) hold below.

(These sets correspond to α playing Gi (after computing G′
i) and player

β’s response to that move of Ui ⊆ Gi.)

(i) Gn ⊆clGn ⊆ T ′
n ⊆ G′

n and G′
n ⊆clG′

n ⊆ Tn ⊆ Gn−1;

(ii) Tn := Un−1∩int(clK1(Sn ∩ Vn)) and T ′
n := G′

n−1∩int(clK1(S
′
n ∩ V ′

n));

(iii) K1(Sn ∩ Vn) is heavy and dense on Tn;

(iv) K2(S
′
n ∩ V ′

n) is heavy and dense on T ′
n.

We verify the inductive step from n odd.

Suppose that β plays U = Un ⊆ Gn.

By the two clauses of (i), Gn ⊆ Tn, so U ⊆ Tn and so by (iii), K1(Sn∩Vn)

is non-meagre on U, so by Proposition L1 there is a minimal closed set Sn+1 in

Sn such that K1(Sn+1∩V ) is non-meagre on U for every V ∈ B meeting Sn+1.

So there is a first Vn+1 ∈ B with diam < 2−n−1 such that K1(Sn+1 ∩ Vn+1)

is non-meagre on U . Then Tn+1 := U∩intcl(K1(Sn+1 ∩ Vn+1)) is non-empty,

and K1(Sn+1 ∩ Vn+1) is heavy and dense on Tn+1 (by Proposition L2). By

regularity, we may pick in X an earliest non-empty G′
n+1 ⊆clG′

n+1 ⊆ Tn+1 ⊆
U ⊆ Gn. Summarizing, K1(Sn+1 ∩ Vn+1) is heavy and dense in Tn+1 and

G′
n+1 ⊆clG′

n+1 ⊆ Tn+1 ⊆ Gn.

As G′
n+1 ⊆ Gn ⊆ T ′

n, (the last inclusion by (i)), by (iv) K2(S
′
n ∩ V ′

n) is

non-meagre on G′
n+1, so there is a minimal closed set S ′n+1 in S ′n such that

K1(S
′
n+1∩V ) is non-meagre on G′

n+1 for every V ∈ B meeting S ′n+1. So there is
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a first V ′
n+1 ∈ B with diam < 2−n−1 such that T ′

n+1 := G′
n+1∩intcl(K2(S

′
n+1∩

V ′
n+1)) is non-empty. Then K2(S

′
n+1 ∩ V ′

n+1) is heavy and dense on T ′
n+1. By

regularity, we may pick in X a first non-empty Gn+1 ⊆clGn+1 ⊆ T ′
n+1 ∩U1 ∩

...Un+1 ⊆ T ′
n+1 ⊆ G′

n+1.

We define π(U0, ..., Un) to be Gn+1.

Taking Fn :=clGn (and noting that Gn ⊆ clGn ⊆ Gn−1, ,by (i)) we may

apply Theorem 2 to deduce that

(A1 ∩ A2) ∩
⋂

n
Un ⊇ (A1 ∩ A2) ∩

⋂
n
Gn = (A1 ∩ A2) ∩

⋂
n
Fn 6= ∅.

Since U0 was arbitrary, we see that A1 ∩ A2 is dense. Furthermore, for U0

arbitrary non-empty and Wn dense open sets, we may let β play U0 and then

Un := W1 ∩ ... ∩Wn ∩Gn for n ≥ 1. Then

(A1 ∩ A2) ∩ U0 ∩
⋂

n
Wn ⊇ (A1 ∩ A2) ∩

⋂
n
Un = (A1 ∩ A2) ∩

⋂
n
Fn 6= ∅.

So A1∩A2∩U0 meets any dense Gδ so is non-meagre. Thus A1∩A2 is heavy.

The measure analogue follows by Lemma 2′. ¤

3.2 Luzin’s Separation Theorem from Analytic Cantor

The last result replaced the σ-ideal M by N and exploited implicitly the

notion of N -heavy. Here we use the omission σ-ideal IA, which comprises

those sets C which may be covered by a Borel set B missing the set A.

So A′ is IA-heavy if for every open set U meeting A′ there is no Borel set

B ∈ IA with A′ ∩ U ⊆ B. This observation leads to a new approach to

Luzin’s Theorem below. A Borel set B is said to Borel-separate A1 from

A2 if A1 ⊆ B and B ∩ A2 = 0. So, if this separation cannot be done, then

A1 is not in IA for A = A2. For analytic sets non-separation translates to

heaviness; for K-analytic sets this may be salvaged to a localization asserting

that A1 ∩ G /∈ IA for some open set G, and this suffices to construct a

‘strategy’ in the sense of the last section. (This follows an idea exploited in

[OT].) Below, for simplicity, we take the Borel sets to be those generated

from the open sets. When convenient, we refer to A2 simply as A. Our first

result is only for the purposes of comparison.
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Omission Localization Lemma A (Analytic). In a metric space for

A1 analytic, the IA-light part of A1, AL, is in IA. If A1 /∈ IA, then A1\AL

is analytic and IA-heavy.

Proof. Taking W := {G ∈ G(X) : G ∩ A1 ∈ IA}, the light part is

AL := A1 ∩
⋃W . By Lemma 1(i) AL is analytic, so Lindelöf; and so, as W

covers AL, there is a countable sequence of sets Gn in W covering AL. We

may assume each Gn meets AL. So, as Gn ∩A1 ∈ IA, there is a Borel set Bn

such that Gn ∩ A1 ⊆ Bn and Bn ∩ A2 = 0. But
⋃

n Bn is Borel, covers AL

and is disjoint from A2, so AL ∈ IA.

Now AH := A1\AL = A1\
⋃W is closed relative to A1 and so analytic

(cf. [Jay-Rog] Th. 2.5.3). If x is in the light part of AH , then for some open

neighbourhood G of x, we have G∩A1 = (G∩AH)∪ (G∩AL) ∈ IA, and so

x ∈ AL, a contradiction. ¤

Omission Localization Lemma L (Lindelöf). For A1 Lindelöf, if

A1 /∈ IA (i.e. A1 is disjoint from A and not Borel separated from A), then

A1 ∩G is not in IA for some open G meeting A1.

Proof. If not, then for each open G meeting A1, since G∩A1 ∈ IA, there

is a Borel set CG with G∩A1 ⊆ CG and CG∩A2 = 0. Then BG := G∩CG is

a Borel subset of G such that G∩A1 ⊆ BG and BG∩A2 = 0. So {G ∈ G(X) :

∅ 6= G ∩ A1 ∈ IA} ⊇ {G ∈ G(X) : G ∩ A1 6= ∅}, and the latter covers A1, so

since A1 is Lindelöf there is a countable sequence of such sets Gn covering

A1. But
⋃

n BGn is Borel, covers A1 and is disjoint from A2, a contradiction.

¤

Luzin’s Theorem (cf. [Jay-Rog], Th. 3.3.1). In a regular Hausdorff

space, if A1, A2 are disjoint K-analytic sets, then there exists a Borel set B

containing A1 and disjoint from A2.

Proof. We use the notation of §1.1. Let A1 = K1(I) and A2 := K2(I)

be disjoint analytic subsets of a regular space X. Suppose the analytic sets

are not Borel separated. Then, by Omission Lemma L, there is G1 open such
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that G1 ∩ A1 is not Borel-separated from G1 ∩ A2. Also, for some i1 and j1

the sets K1(i1)∩G1 and K2(j1)∩G1 are not Borel separated. Indeed, if each

K1(n) was separated from A2 by Bn then
⋃

n Bn covers A1 and is disjoint

from A2. Likewise, if each Bn covers A1 and is disjoint from K2(n), then⋂
n Bn covers A1 and is disjoint from A2.

By regularity, using sets G with clG ⊆ G1 we may likewise find G2 ⊆clG2 ⊆
G1 such that K1(i1) ∩ G2 and K2(j1) ∩ G2 are not Borel separated. Also,

for some i2 and j2 the sets K1(i1, i2) ∩G2 and K2(j1, j2) ∩G2 are not Borel

separated. Continuing inductively, we select a nested sequence Gn and two

points i and j in I such that K1(i|n) ∩ Gn and K2(j|n) ∩ Gn are not Borel

separated. So neither is empty, as Gn is Borel; so for Fn :=clGn we have that

K1(i|n)∩Fn and K2(j|n)∩Fn are both non-empty. We may apply Theorem 2′,

taking A2n := A2 and A2n+1 := A1, to deduce that
⋂

Fn∩K1(i)∩K2(j) 6= ∅,
a contradiction to the disjointness of A1 and A2. ¤

Remarks. 1. Separation theorems of Novikov-type (swelling analytic

sets without common part to Borel sets without common part, see [DJRO])

may be proved by the same technique.

2. Less ‘separable’ versions of Localization Lemma L may readily be

developed (appropriate to ‘non-separable’ descriptive theory, cf. [Han-92],

or [St2]). In a metric space, recall that the extended Borel sets form the

smallest σ-algebra generated from closed sets using countable intersection

and σ-discrete unions. So with ‘Borel’ interpreted throughout as ‘extended

Borel’, assume in Lemma L above in place of the Lindelöf property that A1

has a σ-discrete base for its topology, say B =
⋃{Bn : n ∈ N} with each Bn

discrete. To prove the lemma still holds, suppose otherwise. Then, for each

G ∈ Bn with G∩A1 ∈ IA, there is a Borel set C = CG with G∩A1 ⊆ C and

C∩A2 = 0. Then BG := G∩CG is a Borel subset of G such that G∩A1 ⊆ BG

and BG ∩ A2 = 0. Take Bn :=
⋃{BG : G ∈ Bn} and, as Bn is discrete, so is

{BG : G ∈ Bn}; so Bn is (extended) Borel,
⋃

n Bn covers A1 and omits A, as

before.

3. Louveau’s separation theorem in [Lou] is a further example.

4. There is a similar appeal to heavy analytic sets employed in Harring-
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ton’s proof of Silver’s Theorem on Π1
1-equivalence relations: see [Mil] Ch. 30

and [MK] §9.4.

5. For use of other ideals see e.g. Solecki [Sol1] (where a number of clas-

sical theorems, asserting that a ‘large’ analytic set contains a ‘large’ compact

subset, are deduced) For a closely related result we note Solecki’s dichotomy

that, for I a family of closed sets (in any Polish space) and Iext the sets

covered by a countable union of sets in I, any analytic set A is either in Iext,

(i.e. is Iext-light), or contains a Gδ set not in Iext – cf. Proposition L3 in §3.

(See also [Sol2] for further applications of dichotomy.)

4 Fine Topology Analytic Baire Theorem

In §3 the Baire theorem was deduced for refinement topologies via weak

bases, under the assumption that their elements were associated with some

global family of certain analytic sets of the ground space. Here we again

study the Baire theorem in the setting of two topologies, one metric and the

other a fine topology, i.e. a refinement of the metric one, called therefore a

submetrizable topology. Now we are concerned with refinements defined by

local properties, but our aim is still to exploit the van Mill argument (via

the local connections between the ground topology and its refinement).

To state the result (Theorem 6 below) we begin with notation and def-

initions and, for motivation and context, we pause to consider some local

properties of refinements that are of natural interest.

For (X, d) a separable metric space, Td, as before, denotes the topology

generated by d, B a countable base for Td and A(Td) the analytic subsets

of X under Td. Below, T ⊇ Td denotes the refinement under study (rather

than T ′). We have in mind for T particularly GH, the Gandy-Harrington

topology of §3; we note in passing the case T = Td.

Unsubscripted notation, such as cl (for closure) is with respect to Td and

subscripted, such as clT , is with respect to the T -topology; thus int and intT
denote the respective interiors, while ‘open’ or ‘closed’ means open or closed

in Td. Note that clT A ⊆clA. We refer below to a σ-ideal I.
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Definition (I-topology). Say that the topology T is an I-topology if for

each A ∈ A(Td)\I the set clT A has non-empty T -interior. The topologies Td,

D and also GH (§3 above) are I-topologies for I = M, N , {∅}, respectively.

Definitions (I-inclusion). 1. Write A ⊆I B if A\B ∈ I, and say that

A is I-almost included in B. Note that ⊆I is a transitive relation (A ⊆I
B and B ⊆I C implies A ⊆I C as A\C ⊆ (A\B) ∪ (B\C)).

This definition is motivated by Proposition L3.

2. Following [ChMa], say that U is the quasi-interior of A (relative to

I), and write U =q-int(A), if U is the largest open set in X with U ⊆I A.

So (q-intA)\A ∈ I and q-intA ∈ Td.

3. Say that T is an I-refinement of Td on X if for any T -closed A and

G ∈ Td, A ⊆ G implies that q-int(A) ⊆ G and further if intT A is non-empty,

then so is q-int(A).

4.1 Examples C: Localization refinements

The fine topologies on R below have all played a significant role in analysis

and topology.

1.(a) Ideal-neglecting topologies. If the σ-ideal is translation-invariant and

I satisfies the localization property (cf. §1), then a topology that neglects

members of I may be defined so that G is open in the ideal-neglecting topol-

ogy, in brief i-open, iff G takes the form U\Z with U arbitrary open and any

Z ∈ I; see [LMZ] p. 25.

(b) The case I = N , studied in [Sch], gives a topology T with Td⊆ T ⊆ D.

The topology T may be called the essential topology (by analogy with the

term ‘essential supremum’; cf. [BOst-KCC] §2). Compare [Mar1] Th. 6.

2. Two O’Malley topologies :

(a) In connection with approximate differentiablity, we noted in §2.1

O’Malley’s r-topology R ⊆ D; here one has M(R) = M = M(Td) and

clA\clrA ∈M (cf. [O, Cor. 3.3]).

(b) O’Malley [O] also considers the a.e. topology AE ⊆ R ⊆ D; for D ∈
AE one demands that |D| = |intD|. So here intD⊆ND.
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3. In the absence of a translation-invariant ideal, translation-invariant fine

topologies on R may be generated by first defining convergence at the origin

(relative to a refined neighbourhood base at the origin). Then translation is

used to define convergence at other locations.

(a) Scheinberg’s maximal topology U ⊇ D (see [Sch]) has the following

lifting property: any bounded measurable real-valued function f is equal a.e.

to a unique function f̃ continuous relative to U . (His modification refers to

an ultrafilter of measurable sets extending the filter D0 := {D ∈ D : 0 ∈ D}.)
(b) Wilczyński topologies: Wilczyński (see e.g. [Wil]) modifies the Lebesgue-

density topology in several ways and also transfers the modification to a

‘Baire-category density ’ topology by defining the density of a set E at 0 in

terms of the indicator functions 1nE∩[−1,1] (i.e. indicators of the traces around

the origin of the dilations nE). Then convergence in a chosen (functional)

mode of convergence is demanded.

(c) For a fixed null sequence zn → 0 one may declare S open iff s+zn ∈ S

for any s ∈ S and all but a finite number of indices n. This is related to the

Kestelman-Borwein-Ditor Theorem (see e.g. [BOst-LBII]).

4. The Kunen line (for which see [JKR], or [JR] §4.1) is a refinement

topology T of Td on R with the property that a T -open set differs from an

open set by a countable set. For I the countable sets, T is an I-topology.

Remarks. 1. The topologies satisfy various axioms separation, some-

times stopping short of normality. We recall that a topology T has the

Luzin-Menchoff property relative to Td (cf. [LMZ] Th. 3.11) if for each

closed set H and T -open U there is a T -open V with H ⊆ V ⊆clV ⊆ U.

Recalling that F(Td) ⊆ F(T ), this may be viewed as a restricted ‘normal-

ity’ property in that some T -closed sets (those that are Td-closed) may be

separated from any disjoint T -closed set (X\U, say) by T -open sets (V and

X\clV ). Thus the density topology D and also R has the Luzin-Menchoff

property (see [GNN]).

2. For I = M and X a Baire space (i.e. everywhere non-meagre), or

respectively for I = N and X everywhere locally positive in measure, note

that q-int(A) ⊆ cl(A). Indeed, otherwise if x ∈q-int(A) \ cl(A), then x
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has a Td open nhd U ⊆cl(U)⊆q-int(A) with cl(U)∩A = ∅, contradicting

(q-intA)\A ∈ I, as respectively either U is non-meagre or |cl(U)| > 0.

3. For I = M, X a Baire space (i.e. everywhere non-meagre), and A

closed, write A = U\N ∪M with N, M in I, N ⊆ U and M ∩ U = ∅. Then

one has q-int(A)= U (since U ⊆I A and A\U ∈ I). So for A closed, if A ⊆ G

with G open in X, then U =q-int(A) ⊆ G. Moreover, if A is non-meagre,

then q-int(A) is non-empty.

4. For I = N , the condition clD(M)\intD(M) ∈ N for all M is equivalent

to the density theorem holding (see [LMZ] p. 172).

5. Note that for A = [0, 1] ∩ Q one has clA = [0, 1] and clDA = A, as

[0, 1]\Q is open in D. Thus in D, unlike in R, the two closures, are not equal

modulo N (despite being metrically close – for U open with clDA ⊂ U, one

has clA ⊂ U).

4.2 Fine Analytic Baire Theorems

We now modify the proof of [vM] Prop 2.2 to the context of fine topologies,

replacing M by I. This enables us to conduct completeness arguments

modulo I. Note that, for Td Baire and Un = Gn\Zn with Zn ∈ I and Gn

open and dense, it does not follow from
⋂

n Gn 6= ∅ that
⋂

n Un 6= ∅. Matters

may be different when I has the Borel envelope property; then, for Borel

B ⊇ ⋂
n(X\Zn), we have

⋂
n Un ⊇

⋂
n Gn ∩ B 6= ∅, provided each Gn ∩ B is

analytic and I-heavy. So the first assertion of Theorems 6 and 6′ is stronger

than its second.

Theorem 6 (Analytic Heavy Sets Theorem). For T an I-topology

which is an I-refinement of Td, if A and B are under Td analytic, dense and

I-heavy, then A ∩ B is non-empty. If in addition I has the Borel envelope

property, then A ∩B is dense and I-heavy.

Proof. Take A = α(P ) and B = β(Q), where P, Q are Polish and α, β

are continuous. By Proposition L1 we may assume additionally that for

every non-empty open set V in P the set α(V ) is not in I, and the same
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for β. (That is, passage to the minimal subspaces of Proposition L1 does not

remove density.) This additional property of I-faithfulness (I-irreducibility)

implies that clα(V ) has non-empty T interior, as T is an I-topology. For

convenience, we assume that the diameter of P and Q is at most 1.

Assume inductively that there are open sets Un, Vn,Wn (respectively, in

P, Q,X) of diameters less than 2−n such that

clα(Un) ⊆I clβ(Vn) ⊆ Wn and clα(Un) ⊆ Wn,

with U0 = P, V0 = Q, W0 = X. For the base step of the induction, note that

clα(U0) =clβ(V0) = X = W0, as A and B are dense.

Passing to the inductive step, by the additional property of I-faithfulness

(I-irreducibility), clT (α(Un)) has non-empty T -interior, and so also non-

empty quasi-interior, as T is an I-refinement. Pick W non-empty open in

Td with diam(W )< 2−n−1 and

W ⊆ cl(W ) ⊆ q-int(clT (α(Un))) ⊆I clT (α(Un)) ⊆ cl(α(Un)).

Now W ∩ β(Vn) 6= ∅, as ⊆I is transitive (from transitivity one has that

W ⊆Iclβ(Vn)). So β−1(W ) ∩ Vn 6= ∅ (and is open, as β is continuous). By

regularity of Q and Td, and continuity of β, we may pick a neighbourhood F

in Q of diameter less that 2−n−1 such that both clF ⊆ Vn and clβ(F ) ⊆ W.

Now clT β(F ) has non-empty T -interior, and hence non-empty quasi-

interior, again as T is an I-refinement. The latter is contained in W, as

clT β(F ) ⊆clβ(F ) ⊆ W and clβ(F ) is closed. Now let W ′ be any non-empty

open set in Td with

W ′ ⊆ cl(W ′) ⊆ q-int(clT (β(F ))) ⊆ W .

Again W ′∩α(Un) 6= ∅, as⊆I is transitive (from transitivity we have W ′ ⊆Iclβ(F ) ⊆
W ⊆Iclα(Un)). So α−1(W ′) ∩ Un 6= ∅. By regularity of P and Td and conti-

nuity of α, we may pick a neighbourhood E in P of diameter less that 2−n−1

such that both clE ⊆ Un and clα(E) ⊆ W ′ ⊆ W.

Taking Un+1 = E, Vn+1 = F and Wn+1 = W yields

clα(Un+1) ⊆ W ′ ⊆I clβ(F ) = clβ(Vn+1) ⊆ W = Wn+1,
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which gives the inductive step, i.e. that

clα(Un+1) ⊆I clβ(Vn+1) ⊆ Wn+1 and clα(Un+1) ⊆ Wn+1.

Let {p} =
⋂

n Un ∈ P and {q} =
⋂

n Vn ∈ Q; then α(p) and β(q) ∈ Wn. But

diam(Wn)→ 0 as n →∞, so α(p) = β(q) ∈ A ∩B, as asserted.

Now assume I has the Borel envelope property (Definition 3, §1). For

analytic set A,B that are dense and I-heavy and for any non-empty open

set G, the set A∩G is analytic (as G is an Fσ in the Td topology), and dense

in G; also, since G is open, A is I-heavy in G. Likewise B ∩ G is analytic,

dense and I-heavy in G. So working in G rather than X, we have A∩B ∩G

non-empty. So A∩B is dense in X. If A∩B is not I-heavy, then A∩B ∩G

is in I for some open G. By the Borel envelope assumption, there is a Borel

set C in I such that A ∩B ∩G ⊆ C; then both G ∩ A\C and G ∩B\C are

analytic, dense and I-heavy (by Lemma 4). But then (G∩A\C)∩(G∩B\C)

is non-empty, and yet

∅ = (G ∩ A ∩B)\C = (G ∩ A\C) ∩ (G ∩B\C),

a contradiction. So A ∩B is I-heavy. ¤

The same argument, but using an induction which visits each analytic set

infinitely often, gives:

Theorem 6′ (Fine Analytic Baire Theorem). Let T be an I-

refinement of Td. If An are (under Td) analytic subsets of X that are dense

and I-heavy, then
⋂

n An is non-empty. If in addition I has the Borel en-

velope property, then
⋂

n An is dense and I-heavy.

Remarks. 1. In [Ost-LBIII] we develop a similar inductive argument

in which the intersection
⋂

n Un above avoids a countable number of meagre

sets needing to be neglected. (The latter arise in the course of the induction.)

2. The proof above is again game-theoretic in character and so Theorem

6′ may be rephrased in the language of the multiple-target Choquet game to
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conclude with the assertion that
∏

n An is weakly α-favourable for sets An

that are analytic and dense and I-heavy.

Essentially the same argument as for Theorem 3 proves the following final

result, which relies on the following

Observation. For B = {Bn} a countable base, if for each n the set An is

non-empty, analytic and I-heavy on Bn, then A :=
⋃

n An is analytic, dense

and I-heavy. (For this conclusion, it suffices that B is a weak base: for each

non-empty open V we need only a non-empty B ∈ B with B ⊆ V.)

Theorem 3′ (Fine Generalized Gandy-Harrington Theorem). For

T with a countable weak base B, H ⊆ A(T ) a weak base for T ′ and A(T )

closed under countable intersections of I-dense members, the topology GH is

Baire.

In particular, in the setting of Theorem 6, if I has the Borel envelope

property then GH is Baire.

Proof. For each n, let Gn be dense and open in GH. Choose Hnm ⊆
Gn∩Bm with ∅ 6= Hnm ∈ H and Bm ∈ B (possible, since Gn, being GH-dense,

meets every open set in B, and H is a weak base). Then G′
n :=

⋃
m Hnm is

T -dense, and being locally I-heavy T -everywhere, is I-heavy. As each G′
n is

analytic, by Theorem 6′, ∅ 6= ⋂
n G′

n ⊆
⋂

n Gn.

For V an arbitrary non-empty open set in GH, as the set Gn ∩ V is GH-

dense on V, we may repeat the argument replacing B above by BV := {B ∈
B : B ∩ V 6= ∅}, and reading V ∩Gn for Gn, to deduce that the intersection

V ∩⋂
n Gn is non-empty. So

⋂
n Gn is GH-dense. ¤

5 Concluding comments and remarks

1. p-space analogues.

We recall the definition of p-spaces, modifying that given in [Gr] to fit in

with our vocabulary of K-analytic spaces above (and the notation of §1.1),
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and to clarify the standing of our results. (They are sometimes taken to be

completely regular, cf. [Gr] p. 441.)

Definitions 5.1. Define the product space J = κN for κ a cardinal with

the discrete topology. In a topological space X, an open determining system

G := 〈G(j|n)〉 is called an (open) sieve if for each n ∈ N and j ∈ J the open

family Gn(j|n) := {G(j|n, jn+1) : jn+1 ∈ κ} is a covering of G(j|n). Call X a

p-space if for each j the set G(j) is compact and the mapping j → G(j) :=⋂
nclG(j|n) is upper-semicontinuous for those j with G(j) 6= ∅ (in the sense

that ∅ 6= G(j) ⊆ U, with U open, implies that
⋂

n≤mclG(j|n) ⊆ U for some

m). The sieve is called complete if
⋂{clF : F ∈ F} 6= ∅ for each filterbase F

provided there is j ∈ J such that for each n there is F ∈ F with F ⊆ G(j|n).

A space is sieve-complete if it has a complete sieve. Such spaces are also

called monotonically Čech-complete in [ChCN].

For later use, amend the preceeding definition of a complete sieve by

requiring j as above to satisfy G(j) 6= ∅, and then say that the sieve is

weakly complete. Also call the sieve G = 〈G(j|n)〉 Souslin-like if upper-

semicontinuity arises at all j. (These are the ‘pseudo-complete’ sieves of

[Mich86].)

In certain circumstances, for instance in the metric context (as noted

in §1), the sets K(i|n) in the representation of a K-analytic set may be

expanded (given a G-circumscribed representation) to yield an open sieve.

Notwithstanding this, the proofs of Theorems 4 and 5 may be re-interpreted

as referring to general Souslin-like sieves, and in turn these results may also

be viewed as being about certain kinds of p-spaces.

We note in particular that X is called pointwise countably complete rel-

ative to the sequence of open covers Un if, whenever Fn is decreasing and

non-empty and, for each n, Fn ⊆ Un ∈ Un for sets Un with
⋂

n Un 6= ∅, then⋂
nclFn 6= ∅. (This corresponds to an Inclusion version of the Analytic Cantor

Theorem, Th. 1C.) So p-spaces are pointwise countably complete relative to

Gn and exhibit a Cantor-Theorem property. The need to guarantee a non-

empty intersection
⋂

Un or
⋂

G(j|n) above may be satisfied when working

with strong Choquet-style games as defined in §3.1.
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Conversely, from a Souslin perspective, a p-space is obtained by passing

to a weak Souslin-like sieve, in which upper-semicontinuity is not demanded

when G(i) = ∅. This was the point of view taken in [Ost-2], studying p-spaces

that are metacompact or paracompact (or even Lindelöf).

Definitions 5.2 ([Frol-60], Th.4.5 & 4.6; cf. [CP] p. 500). The (open)

determining system G is an almost sieve if each Gn above is an almost cover

(i.e. the union of each Gn(j|n) is dense in G(j|n)); X is almost complete if it

has a complete almost sieve.

Motivated by the p-space definition, Cao and Piotrowski [CP] define a

game MP(X) by altering the definition of winning rule in the strong Choquet

game (§3.1) to require that either (i)
⋂

n Un = ∅, or (ii) K(U) =
⋂

Un is

compact for U = 〈Un〉 and, for every open W with K(U) ⊆ W, there is n

with Un ⊆ W. The existence of a winning strategy in MP(X) is equivalent to

the existence of an (open) weakly complete sieve. An X with such a sieve is

called a monotonic p-space, or briefly an mp-space. Thus X is an mp-space

iff MP(X) is α-favourable.

An almost mp-space is defined similarly, replacing sieves by (open, weakly

complete) almost sieves. We quote:

Theorem CP (Cao and Piotrowski, [CP] Th. 3.3). A regular space X

is almost complete iff X is weakly α-favourable and X is almost mp.

Remarks. 1. See [ChCN] Ex 2.9 for an example of a locally completely

metrizable space that is metacompact, but not Čech-complete.

2. Every almost complete, completely regular space contains a Čech-

complete, dense Gδ-subspace. (Compare Proposition L3 of §3.)

3. The localization technique is captured abstractly by coverings V of

a space A that are exhaustive, in the sense that every non-empty S ⊆ A

contains a non-empty relatively open subset of the form S ∩ V with V ∈
V . This notion is introduced and used in [Mich86] to define a complete

exhaustive sieve (in the manner above) and to derive from it a notion of

α-favourability.
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4. Topsøe [Top] in 1981 characterizes sieve-complete spaces X by a vari-

ant of the Choquet game in which the winning rule requires that each net

eventually in every Un has a cluster point in X (see also [CP] Th. 2.2).

Michael [Mich86] Th. 7.4 characterizes ‘strictly exhaustive’ sieves that are

pseudo-complete (i.e. Souslin-like) in terms of weak α-favourability.

5. We recall from §2.2 the remark that [Kech] Th. 25.18 shows that for

any sequence of analytic subsets An of a Polish topology Td there exists a

second-countable, strongly Choquet (as above) refinement T under which

each An is open and that [Kech] Ex. 25.19 cites Becker’s result ([Bec] Th.

1.2) that for any second-countable, strong Choquet topology T extending a

Polish topology Td, the members of T are analytic in the sense of Td. This

nicely straddles Theorem CP and weak α-favourability of heavy analytic sets

(Th. 4), as these are almost complete.

6. Arhangel’ski introduced p-spaces in [Arh1] (see also [Arh2] and [Gr]);

they share some of the features of the later generalizations of [WW]. Using

the terminology based on the Souslin operation, like that above (rather than

‘sieves’), Ostaszewski established the connection between K-analyticity and

p-spaces (at the Analytic Sets Conference in 1978 ([Rog]), see [Ost-2]); this

includes preservation theorems for countable products, which are of interest

here in relation to the multi-target Choquet games of §3.1. The sieve per-

spective was studied again more recently by E. Michael (see [Mich86] 1986,

[Mich91] 1991).

2. Effros Theorem.

Recently, van Mill [vM] extended what is now known as the Effros Open

Mapping Principle ([Eff] Th. 2.1, or [Anc], for the more recent view; for

other proofs see [ChMa] and one attributed to Becker in [Kech-T], and also

[Ost-ACE] and the short proof in [Ost-E]) for the setting of an analytic

(rather than Polish) group A acting on a non-meagre metric space X in a

separately continuous fashion (i.e., (a, x) → a(x) is separately continuous in

a and in x). The power of the analytic approach is such that the proof in

fact establishes the following stronger result. We need some definitions.

Definitions. 1. For X an algebraic group, say that || · || : X → R+ is a
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group-norm ([BOst-N]) if the following properties hold:

(i) Subadditivity (Triangle inequality): ||xy|| ≤ ||x||+ ||y||;
(ii) Positivity: ||x|| > 0 for x 6= e;

(iii) Inversion (Symmetry): ||x−1|| = ||x||.
2. The right and left induced norm topologies are given by the right

and left invariant metrics: dX
R (x, y) := ||xy−1|| and dX

L (x, y) := ||x−1y|| =

dX
R (x−1, y−1).

3. An algebraic group G with identity e acts transitively on a space X

if for each x, y in X there is g in X such that g(x) = y. If G as a set is

given a topology, then this action is separately continuous if (g, x) → g(x) is

continuous separately in g and in x. (On this point see Comment 5.3 below.)

The group acts micro-transitively on X if for any open neighbourhood U of

e in G and any x ∈ X the set {h(x) : h ∈ U} is a neighbourhood of x. The

following result was proved by van Mill ([vM]) for G an analytic topological

group; his proof in fact gives:

Analytic Effros Open Mapping Principle. For G an analytic normed

group acting transitively and separately continuously on a separable metriz-

able space X: if X is non-meagre, then G acts micro-transitively on X.

Indeed, van Mill notes that he uses (i) separately continuous action (see

the final page of his proof), (ii) the existence of a sequence of symmetric

neighbourhoods Un of the identity with Un+1 ⊆ U2
n+1 ⊆ Un, and (iii) U1 = G

(see the first page of his proof). By [BOst-N, Th. 2.19′] (the Birkhoff-

Kakutani Normability Theorem) van Mill’s conditions under (ii) specify a

normed group, whereas condition (iii) may be arranged by switching to the

equivalent norm ||x||1 := max{||x||, 1} and then taking Un := {x : ||x||1 <

2−n}.
The normed group result is of interest, as some naturally occurring normed

groups are not complete (see Charatonik et Maćkowiak [ChMa] for Borel

groups that are not complete). For further generalizations see [Ost-E].

3. Bouziad’s Theorems.

A second example on the use of analyticity from the group context is
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Bouziad’s Theorem [Bou1], that an algebraic group endowed with a topol-

ogy under which it is Baire, Čech-analytic and has separately continuous

multiplication (so a semitopological group) is a topological group. A fur-

ther result in similar spirit is on separately continuous actions, again due

to Bouziad (see [Bou2]): a left-topological group (i.e. with continuity only

of left shifts, as happens in normed groups) that is Baire, completely reg-

ular, analytic and with separately continuous action on an analytic space

has continuous action; this covers the context of the Effros Principle in the

preceeding Comment 5.2. (More is true: in particular, we may replace ana-

lytic spaces here by p-spaces.) In this connection one should note that, by

a theorem of Loy [Loy] and Hoffman-Jørgensen [HJ], an analytic topological

group that is Baire is a Polish space; for a generalization see [Ost-Joint].

4. The direct Baire property of Levi.

The paradigm for Proposition L1 in §3 is Levi’s argument in [Levi], which

hinges on the direct Baire property of an analytic space A (open subsets of

A, being analytic, map to Baire sets). This is equivalent to continuous maps,

suitably restricted, becoming open maps; we recall this briefly in a simplified

context. For f : I → A continuous and with B a countable base for I, noting

that for each V ∈ B the image f(V ) is analytic, we put f(V ) = (UV \MV )∪NV

with MV , Nv meagre and UV open. Consider A0 =
⋃{MV : V ∈ B}∪⋃{NV :

V ∈ B}, which is meagre (so assume also an Fσ ), and A′ = A\A0. Take

S = f−1(A′). For V in B, f(V ∩ S) = UV ∩ A′, and so f |S : S → A′ is

open, and induces a countable base for A′. In particular, A′ is metrizable,

in addition to being a dense absolute-Gδ in A (by Hausdorff’s theorem on

the metric preservation of completeness). For a non-separable analogue, see

[Ost-AB].

4. Multiple targets and product spaces.

It is not true in general that a product of Baire spaces is Baire (see [Oxt1]

§4). By contrast, results about the multiple target situations are implied by

results in the individual co-ordinate spaces: see [Wh] Th. 3(4), or [Choq]

7.12(iv).

5. The heart of a set.

51



The inductive processes throughout have relied on the ‘heart’ of a heavy

set H, some such set as intcl(H) or the quasi-interior. In this connection see

[Jay-Rog] Lemma 2.9.1 for the Baire envelope of a set (especially the proof

which refers to the light and heavy parts of a set), and antithetically [Kech]

Th. 8.29 for the properties of the set U(A) :=
⋃{G : G open and A ∩ G

co-meagre on G}. Of course a Baire non-meagre set is ‘locally co-meagre’ on

its quasi-interior. Compare also [St1].

6. Regular variation, measure-category duality.

The normed group version of the Effros theorem is of interest in the theory

of topological regular variation, see e.g. [Ost-knit] and [BOst-TRI], especially

the need for an analytic version to cover the observed absences of complete-

ness. (The non-complete examples, already cited at the end of Remark 2

from [ChMa], are normed groups.) It is this that led to the present study

both of analyticity and of fine topologies. In particular, the density topology

in a bitopological approach allows topological regular variation to unify the

classically established ‘dual’ theory [BGT] in that it has a measure-theoretic

formulation on the one hand and a topological (or Baire) formulation on the

other. This is done in two ways. In [BOst-LBI] the theory is developed in a

larger class of functions, giving a common generalization of the measurable

and Baire-property cases. In [BOst-LBII] a topological embedding theorem,

and the resulting shift-compactness, are the unifying common features of

measurable sets and sets with the Baire property. The latter approach was

instrumental in [BOst-KCC] in eliciting new measure results from known

category results.
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[Bou1] A. Bouziad, Every Čech-analytic Baire semitopological group is

a topological group, Proc. Amer. Math. Soc. 124 (1996), no. 3,

953–959.

[Bou2] A. Bouziad, Continuity of separately continuous group actions

in p-spaces, Topology Appl. 71.2 (1996), 119–124.

[Bur-1] D.K. Burke, On subparacompact spaces, Proc. Amer. Math.

Soc. 23 (1969), 655–663.

[Bur-2] D.K. Burke, Covering properties, Handbook of set-theoretic

topology, 347–422, North-Holland, 1984.

[BrGo] J. C. Bradford and C. Goffman, Metric spaces in which Blum-

berg’s theorem holds, Proc. Amer. Math. Soc. 11 1960 667–670.

[CP] J. Cao and Z. Piotrowski, Two variations of the Choquet game,

Kyungpook Math. J. 44 (2004), no. 4, 495–504.

54
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